自适应阈值

自适应阈值:

​ 当同一幅图像上的不同部分的具有<u>不同亮度</u>时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。

cv2.adaptiveThreshold(src,x,adaptive_method, threshold_type,block_size,param1)

参数:

src:指原图像,原图像应该是灰度图。

x :指当像素值高于(有时是小于)阈值时应该被赋予的新的像素值

adaptive_methodCV_ADAPTIVE_THRESH_MEAN_CCV_ADAPTIVE_THRESH_GAUSSIAN_C

threshold_type : 指取阈值类型:

​ 必须是 CV_THRESH_BINARY, CV_THRESH_BINARY_INV

block_size: 指用来计算阈值的象素邻域大小: 3, 5, 7, ...

param1 :指与方法有关的参数。对方法CV_ADAPTIVE_THRESH_MEAN_CCV_ADAPTIVE_THRESH_GAUSSIAN_C, 它是一个从均值或加权均值提取的常数, 尽管它可以是负数。

自适应阈值:

  • 对方法CV_ADAPTIVE_THRESH_MEAN_C,先求出块中的均值,再减掉param1
  • 对方法 CV_ADAPTIVE_THRESH_GAUSSIAN_C ,先求出块中的加权和(gaussian), 再减掉param1

例:

import cv2
import numpy as np
import  matplotlib.pyplot as plt
img = cv2.imread("text1.png",0)

# img = cv2.resize(img,(0,0),fx=0.5,fy=0.5)
# 全局阈值
(t,thresh) = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# 自适应阈值
thresh0 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,5,4)
thresh1 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,5,4)

plt.figure(figsize=(8,10))
plt.subplot(221)
plt.imshow(img,cmap="gray")
plt.xlabel("原图",fontproperties='SimHei')
plt.subplot(222)
plt.imshow(thresh,cmap="gray")
plt.xlabel("OTSU阈值",fontproperties='SimHei')
plt.subplot(223)
plt.imshow(thresh0,cmap="gray")
plt.xlabel("自适应高斯阈值",fontproperties='SimHei')
plt.subplot(224)
plt.imshow(thresh1,cmap="gray")
plt.xlabel("自适应均值阈值",fontproperties='SimHei')
plt.show()

输出结果:

自适应阈值.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,423评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,147评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,019评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,443评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,535评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,798评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,941评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,704评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,152评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,494评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,629评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,295评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,901评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,742评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,978评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,333评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,499评论 2 348

推荐阅读更多精彩内容

  • 对于色彩均衡的图像,直接使用个阈值就能完成对图像的阙值化处理。但是,有时图像的色彩是不均衡的,此时如果只使用一个阙...
    dinel阅读 1,377评论 0 0
  • 定义:图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果...
    朝畫夕拾阅读 13,597评论 0 0
  • 图像去噪可以分为固定阈值去噪和自适应阈值去噪 固定阈值去噪 opencv函数(python):cv2.thresh...
    小松qxs阅读 1,142评论 0 0
  • 图像阈值操作 图像阈值操作目的是从灰度图像中分离出目标区域和背景区域 图像的二值化就是将图像上的像素点的灰度值设置...
    深思海数_willschang阅读 4,206评论 0 12
  • 2019.3.23 P413 晴 大风 春暖花开,万物复苏,正是踏春好时节。东营的春天,是风的季节...
    月出孤舟寒阅读 781评论 3 9