2020年最全-少样本学习(FSL)相关综述、数据集、模型/算法和应用资源整理分享

<meta charset="utf-8">

作者:lqfarmer
链接:https://zhuanlan.zhihu.com/p/146207227
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

Few Shot Learning(FSL)又称少样本学习,这是做AI研究经常遇到的一个问题。深度学习技术需要大量的数据来训练一个好的模型。例如典型的 MNIST 分类问题,一共有 10 个类,训练集一共有 6000 个样本,平均下来每个类大约 600 个样本,但是我们想一下我们人类自己,我们区分 0 到 9 的数字图片的时候需要看 6000 张图片才知道怎么区分吗?很显然,不需要!这表明当前的深度学习技术和我们人类智能差距还是很大的,要想弥补这一差距,少样本学习是一个很关键的问题。

另外还有一个重要原因是如果想要构建新的数据集,还是举分类数据集为例,我们需要标记大量的数据,但是有的时候标记数据集需要某些领域的专家(例如医学图像的标记),这费时又费力,因此如果我们可以解决少样本学习问题,只需要每个类标记几张图片就可以高准确率的给剩余大量图片自动标记。

基于以上两个重要的的原因,少样本学习是一个非常吸引人且具有非常重要研究意义,工业实用价值的一个领域,本资源整理了近几年在深度学习领域,少样本学习相关综述、数据集、模型/算法和应用资源,分享给大家。

资源整理自网络,源地址:https://github.com/tata1661/FewShotPapers

目录

综述论文

相关数据集

相关模型

多任务学习

嵌入学习

利用外部记忆学习

生成建模

算法相关

Fine tuning现有参数

Fine tuning元学习参数

参数学习搜索

应用场景

计算机视觉

机器人学

自然语言处理

声音信号处理

其他

理论研究相关

综述论文

Generalizing from a few examples: A survey on few-shot learning, CSUR, 2020 Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni.

相关数据集

Learning from one example through shared densities on transforms, in CVPR, 2000. E. G. Miller, N. E. Matsakis, and P. A. Viola.

Domain-adaptive discriminative one-shot learning of gestures, in ECCV, 2014. T. Pfister, J. Charles, and A. Zisserman.

One-shot learning of scene locations via feature trajectory transfer, in CVPR, 2016. R. Kwitt, S. Hegenbart, and M. Niethammer.

Low-shot visual recognition by shrinking and hallucinating features, in ICCV, 2017. B. Hariharan and R. Girshick.

Improving one-shot learning through fusing side information, arXiv preprint, 2017. Y.H.Tsai and R.Salakhutdinov.

Fast parameter adaptation for few-shot image captioning and visual question answering, in ACM MM, 2018. X. Dong, L. Zhu, D. Zhang, Y. Yang, and F. Wu.

Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning, in CVPR, 2018. Y. Wu, Y. Lin, X. Dong, Y. Yan, W. Ouyang, and Y. Yang.

Low-shot learning with large-scale diffusion, in CVPR, 2018. M. Douze, A. Szlam, B. Hariharan, and H. Jégou.

Diverse few-shot text classification with multiple metrics, in NAACL-HLT, 2018. M. Yu, X. Guo, J. Yi, S. Chang, S. Potdar, Y. Cheng, G. Tesauro, H. Wang, and B. Zhou.

Delta-encoder: An effective sample synthesis method for few-shot object recognition, in NeurIPS, 2018. E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder, A. Kumar, R. Feris, R. Giryes, and A. Bronstein.

Low-shot learning via covariance-preserving adversarial augmentation networks, in NeurIPS, 2018. H. Gao, Z. Shou, A. Zareian, H. Zhang, and S. Chang.

AutoAugment: Learning augmentation policies from data, in CVPR, 2019. E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le.

EDA: Easy data augmentation techniques for boosting performance on text classification tasks, in EMNLP and IJCNLP, 2019. J. Wei and K. Zou.

相关模型

多任务学习

Multi-task transfer methods to improve one-shot learning for multimedia event detection, in BMVC, 2015. W. Yan, J. Yap, and G. Mori.

Label efficient learning of transferable representations acrosss domains and tasks, in NeurIPS, 2017. Z. Luo, Y. Zou, J. Hoffman, and L. Fei-Fei.

Multi-content GAN for few-shot font style transfer, in CVPR, 2018. S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and T. Darrell.

Feature space transfer for data augmentation, in CVPR, 2018. B. Liu, X. Wang, M. Dixit, R. Kwitt, and N. Vasconcelos.

One-shot unsupervised cross domain translation, in NeurIPS, 2018. S. Benaim and L. Wolf.

Fine-grained visual categorization using meta-learning optimization with sample selection of auxiliary data, in ECCV, 2018. Y. Zhang, H. Tang, and K. Jia.

Few-shot charge prediction with discriminative legal attributes, in COLING, 2018. Z. Hu, X. Li, C. Tu, Z. Liu, and M. Sun.

Few-shot adversarial domain adaptation, in NeurIPS, 2017. S. Motiian, Q. Jones, S. Iranmanesh, and G. Doretto.

嵌入学习

Object classification from a single example utilizing class relevance metrics, in NeurIPS, 2005.* M. Fink.

Few-shot learning through an information retrieval lens, in NeurIPS, 2017. E. Triantafillou, R. Zemel, and R. Urtasun.

Optimizing one-shot recognition with micro-set learning, in CVPR, 2010. K. D. Tang, M. F. Tappen, R. Sukthankar, and C. H. Lampert.

Siamese neural networks for one-shot image recognition, ICML deep learning workshop, 2015. G. Koch, R. Zemel, and R. Salakhutdinov

Matching networks for one shot learning, in NeurIPS, 2016. O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al.

Learning feed-forward one-shot learners, in NeurIPS, 2016. L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and A. Vedaldi.

Low data drug discovery with one-shot learning, ACS Central Science, 2017. H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande.

Prototypical networks for few-shot learning, in NeurIPS, 2017. J. Snell, K. Swersky, and R. S. Zemel.

Attentive recurrent comparators, in ICML, 2017. P. Shyam, S. Gupta, and A. Dukkipati.

Learning algorithms for active learning, in ICML, 2017. P. Bachman, A. Sordoni, and A. Trischler.

Active one-shot learning, arXiv preprint, 2017. M. Woodward and C. Finn.

Structured set matching networks for one-shot part labeling, in CVPR, 2018. J. Choi, J. Krishnamurthy, A. Kembhavi, and A. Farhadi.

Low-shot learning from imaginary data, in CVPR, 2018. Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan.

Learning to compare: Relation network for few-shot learning, in CVPR, 2018. F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales.

Dynamic conditional networks for few-shot learning, in ECCV, 2018. F. Zhao, J. Zhao, S. Yan, and J. Feng.

Tadam: Task dependent adaptive metric for improved few-shot learning, in NeurIPS, 2018. B. Oreshkin, P. R. López, and A. Lacoste.

Meta-learning for semi- supervised few-shot classification, in ICLR, 2018. M. Ren, S. Ravi, E. Triantafillou, J. Snell, K. Swersky, J. B. Tenen- baum, H. Larochelle, and R. S. Zemel.

Few-shot learning with graph neural networks, in ICLR, 2018. V. G. Satorras and J. B. Estrach.

A simple neural attentive meta-learner, in ICLR, 2018. N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel.

Meta-learning with differentiable closed-form solvers, in ICLR, 2019. L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi.

Learning to propopagate labels: Transductive propagation network for few-shot learning, in ICLR, 2019. Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. Hwang, and Y. Yang.

利用外部记忆学习

Meta-learning with memory-augmented neural networks, in ICML, 2016. A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap.

Few-shot object recognition from machine-labeled web images, in CVPR, 2017. Z. Xu, L. Zhu, and Y. Yang.

Learning to remember rare events, in ICLR, 2017. Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio.

Meta networks, in ICML, 2017. T. Munkhdalai and H. Yu.

Memory matching networks for one-shot image recognition, in CVPR, 2018. Q. Cai, Y. Pan, T. Yao, C. Yan, and T. Mei.

Compound memory networks for few-shot video classification, in ECCV, 2018. L. Zhu and Y. Yang.

Memory, show the way: Memory based few shot word representation learning, in EMNLP, 2018. J. Sun, S. Wang, and C. Zong.

Rapid adaptation with conditionally shifted neurons, in ICML, 2018. T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler.

Adaptive posterior learning: Few-shot learning with a surprise-based memory module, in ICLR, 2019. T. Ramalho and M. Garnelo.

生成建模

One-shot learning of object categories, TPAMI, 2006. L. Fei-Fei, R. Fergus, and P. Perona.

Learning to learn with compound HD models, in NeurIPS, 2011. A. Torralba, J. B. Tenenbaum, and R. R. Salakhutdinov.

One-shot learning with a hierarchical nonparametric bayesian model, in ICML Workshop on Unsupervised and Transfer Learning, 2012. R. Salakhutdinov, J. Tenenbaum, and A. Torralba.

Human-level concept learning through probabilistic program induction, Science, 2015. B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum.

One-shot generalization in deep generative models, in ICML, 2016. D. Rezende, I. Danihelka, K. Gregor, and D. Wierstra.

One-shot video object segmentation, in CVPR, 2017. S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixe ́, D. Cremers, and L. Van Gool.

Towards a neural statistician, in ICLR, 2017. H. Edwards and A. Storkey.

Extending a parser to distant domains using a few dozen partially annotated examples, in ACL, 2018. V. Joshi, M. Peters, and M. Hopkins.

MetaGAN: An adversarial approach to few-shot learning, in NeurIPS, 2018. R. Zhang, T. Che, Z. Ghahramani, Y. Bengio, and Y. Song.

Few-shot autoregressive density estimation: Towards learning to learn distributions, in ICLR, 2018. S. Reed, Y. Chen, T. Paine, A. van den Oord, S. M. A. Eslami, D. Rezende, O. Vinyals, and N. de Freitas.

The variational homoencoder: Learning to learn high capacity generative models from few examples, in UAI, 2018. L. B. Hewitt, M. I. Nye, A. Gane, T. Jaakkola, and J. B. Tenenbaum.

Meta-learning probabilistic inference for prediction, in ICLR, 2019. J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. Turner.

算法相关

Fine tuning现有参数

Cross-generalization: Learning novel classes from a single example by feature replacement, in CVPR, 2005. E. Bart and S. Ullman.

One-shot adaptation of supervised deep convolutional models, in ICLR, 2013. J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, and T. Darrell.

Learning to learn: Model regression networks for easy small sample learning, in ECCV, 2016. Y.-X. Wang and M. Hebert.

Learning from small sample sets by combining unsupervised meta-training with CNNs, in NeurIPS, 2016. Y.-X. Wang and M. Hebert.

Efficient k-shot learning with regularized deep networks, in AAAI, 2018. D. Yoo, H. Fan, V. N. Boddeti, and K. M. Kitani.

CLEAR: Cumulative learning for one-shot one-class image recognition, in CVPR, 2018. J. Kozerawski and M. Turk.

Learning structure and strength of CNN filters for small sample size training, in CVPR, 2018. R. Keshari, M. Vatsa, R. Singh, and A. Noore.

Dynamic few-shot visual learning without forgetting, in CVPR, 2018. S. Gidaris and N. Komodakis.

Low-shot learning with imprinted weights, in CVPR, 2018. H. Qi, M. Brown, and D. G. Lowe.

Neural voice cloning with a few samples, in NeurIPS, 2018. S.Arik,J.Chen,K.Peng,W.Ping,andY.Zhou.

Fine tuning元学习参数

Model-agnostic meta-learning for fast adaptation of deep networks, in ICML, 2017. C. Finn, P. Abbeel, and S. Levine.

Bayesian model-agnostic meta-learning, in NeurIPS, 2018. J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn.

Probabilistic model-agnostic meta-learning, in NeurIPS, 2018. C. Finn, K. Xu, and S. Levine.

Gradient-based meta-learning with learned layerwise metric and subspace, in ICML, 2018. Y. Lee and S. Choi.

Recasting gradient-based meta-learning as hierarchical Bayes, in ICLR, 2018. E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths.

Few-shot human motion prediction via meta-learning, in ECCV, 2018. L.-Y. Gui, Y.-X. Wang, D. Ramanan, and J. Moura.

The effects of negative adaptation in model-agnostic meta-learning, arXiv preprint, 2018. T. Deleu and Y. Bengio.

Amortized bayesian meta-learning, in ICLR, 2019. S. Ravi and A. Beatson.

Meta-learning with latent embedding optimization, in ICLR, 2019. A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell.

参数学习搜索

Optimization as a model for few-shot learning, in ICLR, 2017. S. Ravi and H. Larochelle.

应用场景

计算机视觉

Learning robust visual-semantic embeddings, in CVPR, 2017. Y.-H. Tsai, L.-K. Huang, and R. Salakhutdinov.

Multi-attention network for one shot learning, in CVPR, 2017. P. Wang, L. Liu, C. Shen, Z. Huang, A. van den Hengel, and H. Tao Shen.

One-shot action localization by learning sequence matching network, in CVPR, 2018. H. Yang, X. He, and F. Porikli.

Few-shot and zero-shot multi-label learning for structured label spaces, in EMNLP, 2018. A. Rios and R. Kavuluru.

Meta-dataset: A dataset of datasets for learning to learn from few examples, arXiv preprint, 2019. E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, K. Xu, R. Goroshin, C. Gelada, K. Swersky, P.-A. Manzagol et al.

机器人学

Towards one shot learning by imitation for humanoid robots, in ICRA, 2010. Y. Wu and Y. Demiris.

Learning manipulation actions from a few demonstrations, in ICRA, 2013. N. Abdo, H. Kretzschmar, L. Spinello, and C. Stachniss.

Learning assistive strategies from a few user-robot interactions: Model-based reinforcement learning approach, in ICRA, 2016. M. Hamaya, T. Matsubara, T. Noda, T. Teramae, and J. Morimoto.

One-shot imitation learning, in NeurIPS, 2017. Y. Duan, M. Andrychowicz, B. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and W. Zaremba.

Continuous adaptation via meta-learning in nonstationary and competitive environments, in ICLR, 2018. M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and P. Abbeel.

Deep online learning via meta-learning: Continual adaptation for model-based RL, in ICLR, 2018. A. Nagabandi, C. Finn, and S. Levine.

Meta-learning language-guided policy learning, in ICLR, 2019. J. D. Co-Reyes, A. Gupta, S. Sanjeev, N. Altieri, J. DeNero, P. Abbeel, and S. Levine.

自然语言处理

High-risk learning: Acquiring new word vectors from tiny data, in EMNLP, 2017. A. Herbelot and M. Baroni.

FewRel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation, in EMNLP, 2018. X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun.

声音信号处理

One-shot learning of generative speech concepts, in CogSci, 2014. B. Lake, C.-Y. Lee, J. Glass, and J. Tenenbaum.

Machine speech chain with one-shot speaker adaptation, INTERSPEECH, 2018. A. Tjandra, S. Sakti, and S. Nakamura.

Investigation of using disentangled and interpretable representations for one-shot cross-lingual voice conversion, INTERSPEECH, 2018. S. H. Mohammadi and T. Kim.

其他

A meta-learning perspective on cold-start recommendations for items, in NeurIPS, 2017. M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle.

SMASH: One-shot model architecture search through hypernetworks, in ICLR, 2018. A. Brock, T. Lim, J. Ritchie, and N. Weston.

理论研究相关

Learning to learn around a common mean, in NeurIPS, 2018. G. Denevi, C. Ciliberto, D. Stamos, and M. Pontil.

Meta-learning and universality: Deep representations and gradient descent can approximate any learning algorithm, in ICLR, 2018. C. Finn and S. Levine.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354