真/伪随机、以及随机算法

伪随机性(英语:Pseudorandomness)是一个过程似乎是随机的,但实际上并不是。伪随机数是看似随机实质是固定的周期性序列,也就是有规则的随机。
什么是随机数
随机数在计算机应用中使用的比较广泛,最为熟知的便是在密码学中的应用。随机数有3个特性,具体如下:

随机性:不存在统计学偏差,是完全杂乱的数列
不可预测性:不能从过去的数列推测出下一个出现的数
不可重现性:除非将数列本身保存下来,否则不能重现相同的数列

Random算法
Random的使用是把要随机的集合顺序排列,从集合中随机挑选
Random详细用法请看我这篇文章Java中Random的用法
Shuffle算法
Shuffle算法和排序算法正好相反,是从有序到乱序的一个过程,俗称洗牌算法。
在Java中,有现成的shuffle算法实现,即Collections类中的两个重载的shuffle方法:

public static void shuffle(List<?> list) {
    Random rnd = r;
    if (rnd == null)
        r = rnd = new Random();
    shuffle(list, rnd);
}
private static Random r;

public static void shuffle(List<?> list, Random rnd) {
    int size = list.size();
    if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
        for (int i=size; i>1; i--)
            swap(list, i-1, rnd.nextInt(i));
    } else {
        Object arr[] = list.toArray();

        // Shuffle array
        for (int i=size; i>1; i--)
            swap(arr, i-1, rnd.nextInt(i));

        // Dump array back into list
        ListIterator it = list.listIterator();
        for (int i=0; i<arr.length; i++) {
            it.next();
            it.set(arr[i]);
        }
    }
}

真随机与伪随机
随机数分为真随机数和伪随机数,我们程序使用的基本都是伪随机数,其中伪随机又分为强伪随机数和弱伪随机数。

真随机数,通过物理实验得出,比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等。需要满足随机性、不可预测性、不可重现性。
伪随机数,通过一定算法和种子得出。软件实现的是伪随机数。
强伪随机数,难以预测的随机数。需要满足随机性和不可预测性。
弱伪随机数,易于预测的随机数。需要满足随机性。
上面介绍Random算法和Shuffle算法的时候,代码实现都是伪随机算法。可以这样说:

只要这个随机数是由确定算法生成的,那就是伪随机。只能通过不断算法优化,使你的随机数更接近随机。

有限状态机不能产生真正的随机数的,所以,现代计算机中,无法通过一个纯算法来生成真正的随机数,无论是哪种语言,单纯的算法生成的数字都是伪随机数,都是由可确定的函数通过一个种子,产生的伪随机数。

这也就意味着,如果知道了种子,就可以推断接下来的随机数序列的信息。这就有了可预测性。

那么真随机数怎么产生的呢?

通过真实随机事件取得的随机数才是真随机数。

真正的随机数是使用物理现象产生的:比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等等。这样的随机数发生器叫做物理性随机数发生器,它们的缺点是技术要求比较高,效率低。

现有的真随机数生成器,比如PuTTYgen的随机数是让用户移动鼠标达到一定的长度,之后把鼠标的运动轨迹转化为种子;Intel通过电阻和振荡器来生成热噪声作为信息熵资源;Unix/Linux的dev/random和/dev/urandom采用硬件噪音生成随机数;

所以,要想生成真的随机数,是无法用任何一个纯算法实现的。都需要借助外部物理现象。

Java中的随机数生成器
Java语言提供了几种随机数生成器,如前面提到的Random类,还有SecureRandom类。

伪随机数生成器

伪随机数发生器采用特定的算法,将随机数种子seed转换成一系列的伪随机数。伪随机数依赖于seed的值,给定相同的seed值总是生成相同的随机数。伪随机数的生成过程只依赖CPU,不依赖任何外部设备,生成速度快,不会阻塞。

Java提供的伪随机数发生器有java.util.Random类和java.util.concurrent.ThreadLocalRandom类。

Random类采用AtomicLong实现,保证多线程的线程安全性,但正如该类注释上说明的,多线程并发获取随机数时性能较差。

多线程环境中可以使用ThreadLocalRandom作为随机数发生器,ThreadLocalRandom采用了线程局部变量来改善性能,这样就可以使用long而不是AtomicLong,此外,ThreadLocalRandom还进行了字节填充,以避免伪共享。

强随机数发生器

强随机数发生器依赖于操作系统底层提供的随机事件。强随机数生成器的初始化速度和生成速度都较慢,而且由于需要一定的熵累积才能生成足够强度的随机数,所以可能会造成阻塞。熵累积通常来源于多个随机事件源,如敲击键盘的时间间隔,移动鼠标的距离与间隔,特定中断的时间间隔等。所以,只有在需要生成加密性强的随机数据的时候才用它。

Java提供的强随机数发生器是java.security.SecureRandom类,该类也是一个线程安全类,使用synchronize方法保证线程安全,但jdk并没有做出承诺在将来改变SecureRandom的线程安全性。因此,同Random一样,在高并发的多线程环境中可能会有性能问题。

在linux的实现中,可以使用/dev/random和/dev/urandom作为随机事件源。由于/dev/random是堵塞的,在读取随机数的时候,当熵池值为空的时候会堵塞影响性能,尤其是系统大并发的生成随机数的时候。

真随机数发生器

在Linux系统中,SecureRandom的实现借助了/dev/random和/dev/urandom,可以使用硬件噪音生成随机数;

http://random.org/,从1998年开始提供在线真随机数服务了,它用大气噪音生成真随机数。他也提供了Java工具类,可以拿来使用。地址:https://sourceforge.net/projects/randomjapi/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349

推荐阅读更多精彩内容