广告点击率预估常见问题

业务问题

搜索广告Query:和广告的匹配程度很关键
展示广告:广告本身的历史表现,往往是最重要的Feature

评估指标AUC/P-R曲线

用Precision和Recall可以评估点击率算法的好坏,但这种方法对于测试样本的依赖性非常大,稍微不同的测试数据集合,结果差异非常大。那么,既然无法使用简单的单点Precision/Recall来描述,我们可以考虑使用一系列的点来描述准确性当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。AUC对样本的比例变化有一定的容忍性。AUC的值通常在0.6-0.85之间。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容