8 灰度直方图

一、直方图的定义、意义和特征

  1. 定义
    在统计学中,直方图是一种对数据分布情况的图形表示,是一种二维统计图表,他的两个坐标分别是统计样本(图像、视频帧)和样本的某种属性(亮度,像素值,梯度,方向,色彩等等任何特征)。
1
2
  1. 意义
    (1)直方图是图像中像素强度分布的图形表达方式。
    (2)直方图统计了每一个强度值所具有的像素个数。

  2. 特征
    (1)直方图不再表征任何的图像纹理信息,而是对图像像素的统计。
    (2)由于同一物体无论是旋转还是平移在图像中都具有相同的灰度值,因此直方图具有平移不变性、放缩不变性等优点。

  3. 方法和参数
    cv2.calcHist(images, channels, mask, histSize, ranges[hist[, accumulate]])
    (1)images : 整型类型(uint8和float32)的原图(list形式显示)。
    (2)channels : 通道的索引,例如:[0]代表灰度图片,[0],[1],[2]代表多通道。
    (3)mask : 计算图片指定区域的直方图。如果mask为none,那么计算整张图。
    (4)histSize( bins ) : 每个色调值(范围: 0 ~ 255)对应的像素数量/频率。[这256个值中的每一个都被称为bin,它的取值有8,16,32,64,128,256。在OpenCV中,用histSize表示bins。]
    (5)range : 强度值的范围,[0, 256]。

# 1导入库
import cv2
import matplotlib.pyplot as plt
import numpy as np


# 2 方法:显示图片
def show_image(image, title, pos):
    #顺序转换:BGR TO RGB
    image_RGB = image[:,:,::-1] # shape:(height, width, channel)
    # 显示标题
    plt.title(title)
    plt.subplot(2, 3, pos) # 定位
    plt.imshow(image_RGB)
    
# 3 方法:显示图片的灰度直方图
def show_histogram(hist, title, pos, color):
    # 显示标题
    plt.title(title)
    plt.subplot(2, 3, pos) # 定位图片
    plt.xlabel('Bins') # 横轴信息
    plt.ylabel('Pixels') # 纵轴信息
    plt.xlim([0, 256]) # 范围
    plt.plot(hist, color = color) #绘制直方图
    
# 主函数 main()
def main():
    # 5 创建画布
    plt.figure(figsize=(15, 6)
              # , frameon=True
              ) # 画布大小和边框显示
    # 设置标题形式
    plt.suptitle("Gray Image Histogram", fontsize = 14, fontweight = 'bold')
    
    # 6 加载图片
    img = cv2.imread('./image/a.jpg')
    
    # 7 灰度转换
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    # 8 计算灰度图的直方图
    hist_img = cv2.calcHist([img_gray], [0], None, [256], [0, 256])
    
    # 9 展示灰度直方图
    # 灰度图转换成BGR格式图片
    img_BGR = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2BGR)
    show_image(img_BGR, "BGR", 1)
    show_histogram(hist_img, 'gray image histgoram', 5, 'r')
    plt.show()
    
if __name__=='__main':
    main()
# 1 导入库
import cv2
import matplotlib.pyplot as plt
import numpy as np

# 2 方法:显示图片
def show_image(image, title, pos):
    #  顺序转换:BGR TO RGB
    image_RGB = image[:, :, ::-1] # shape : (height, width, channel)
    # 显示标题
    plt.title(title)
    plt.subplot(2, 3, pos) # 定位
    plt.imshow(image_RGB)

# 3 方法:显示图片的灰度直方图
def show_histogram(hist, title, pos, color):
    # 显示标题
    plt.title(title)
    plt.subplot(2, 3, pos) # 定位图片
    plt.xlabel("Bins") # 横轴信息
    plt.ylabel("Pixels") # 纵轴信息
    plt.xlim([0, 256]) # 范围
    plt.plot(hist, color=color) # 绘制直方图


# 4 主函数 main()
def main():
    # 5 创建画布
    plt.figure(figsize=(15, 6)) # 画布大小
    plt.suptitle("Gray Image Histogram", fontsize=14, fontweight="bold") # 设置标题形式

    # 6 加载图片
    img = cv2.imread("children.jpg")

    # 7 灰度转换
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # 8 计算灰度图的直方图
    hist_img = cv2.calcHist([img_gray], [0], None, [256], [0, 256])

    # 9 展示灰度直方图
    # 灰度图转换成BGR格式图片
    img_BGR = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2BGR)
    show_image(img_BGR, "BGR image", 1)
    show_histogram(hist_img, "gray image histogram", 4, "m")

    # 10 对图片中的每个像素值增加50个像素
    M = np.ones(img_gray.shape, np.uint8) * 50 # 构建矩阵

    added_img = cv2.add(img_gray, M)
    add_img_hist = cv2.calcHist([added_img], [0], None, [256], [0, 256]) # 计算直方图
    added_img_BGR = cv2.cvtColor(added_img, cv2.COLOR_GRAY2BGR)
    show_image(added_img_BGR, "added image", 2)
    show_histogram(add_img_hist, "added image hist", 5, "m")

    # 11 对图片中的每个像素值减去50个像素
    subtract_img = cv2.subtract(img_gray, M)
    subtract_img_hist = cv2.calcHist([subtract_img], [0], None, [256], [0, 256]) # 计算直方图
    subtract_img_BGR = cv2.cvtColor(subtract_img, cv2.COLOR_GRAY2BGR)
    show_image(subtract_img_BGR, "subtracted image", 3)
    show_histogram(subtract_img_hist, "subtracted image hist", 6, "m")

    plt.show()

if __name__ == '__main__':
    main()
gray_image_add_subtract.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,607评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,239评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,960评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,750评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,764评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,604评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,347评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,253评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,702评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,893评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,015评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,734评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,352评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,934评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,052评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,216评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,969评论 2 355

推荐阅读更多精彩内容