docker 安装 Elasticsearch:6.5.4 并使用logstash 同步mysql数据到Elasticsearch

  • 拉镜像
docker pull elasticsearch:6.5.4 

6.5.4: Pulling from library/elasticsearch
a02a4930cb5d: Downloading [===================>                               ]     30MB/75.17MB
dd8a94cca3f9: Downloading [=>                                                 ]  6.421MB/188.1MB
bd73f551dee4: Download complete 
70de352c4efc: Downloading [===================>                               ]  2.637MB/6.859MB
0b5ae4c7310f: Waiting 
489d9f8b18f1: Waiting 
8ba96caf5951: Waiting 
f1df04f27c5f: Waiting 
  • 查看镜像
docker images

REPOSITORY                     TAG                 IMAGE ID            CREATED             SIZE
elasticsearch                  6.5.4               93109ce1d590        5 weeks ago         774MB
  • 启动一个容器
    elasticsearch/jvm.options 默认配置 -Xms2g - Xmx2g 来指定内存 我使用的是1G内存 所以需要指定-Xms -Xmx 大小
    内存够大就使用默认-Xmx 启动容器如下:
docker run -d --name elasticsearch --net somenetwork -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" elasticsearch:6.5.4 

d2953375ec7ea5eef1f84d9d39f3f0678a17274d7698716456034c1563aab864

内存比较小比如我1g 就需要指定-Xms -Xmx 大小

docker run -d --name elasticsearch --net somenetwork -p 9200:9200 -p 9300:9300 -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" -e "discovery.type=single-node" elasticsearch:6.5.4                    
ed40afba226b0ca3a148f41d142d195529b902726b0019742a83a8d595ed5583

9300端口: ES节点之间通讯使用
9200端口: ES节点 和 外部 通讯使用

  • 查看启动容器
docker ps 

CONTAINER ID        IMAGE                          COMMAND                  CREATED             STATUS                      PORTS                                                                                        NAMES
d2953375ec7e        elasticsearch:6.5.4            "/usr/local/bin/dock…"   37 seconds ago      Exited (1) 36 seconds ago                                                                                                elasticsearch
 curl -v 127.0.0.1:9200 

* Rebuilt URL to: 127.0.0.1:9200/
*   Trying 127.0.0.1...
* Connected to 127.0.0.1 (127.0.0.1) port 9200 (#0)
> GET / HTTP/1.1
> Host: 127.0.0.1:9200
> User-Agent: curl/7.47.0
> Accept: */*
> 
< HTTP/1.1 200 OK
< content-type: application/json; charset=UTF-8
< content-length: 494
< 
{
  "name" : "JFvwCOs",
  "cluster_name" : "docker-cluster",
  "cluster_uuid" : "gFw-ERtCRs-5vc-zEMBbIg",
  "version" : {
    "number" : "6.5.4",
    "build_flavor" : "default",
    "build_type" : "tar",
    "build_hash" : "d2ef93d",
    "build_date" : "2018-12-17T21:17:40.758843Z",
    "build_snapshot" : false,
    "lucene_version" : "7.5.0",
    "minimum_wire_compatibility_version" : "5.6.0",
    "minimum_index_compatibility_version" : "5.0.0"
  },
  "tagline" : "You Know, for Search"
}
* Connection #0 to host 127.0.0.1 left intact
  • 安装head插件
    最简单方式可以直接安装谷歌插件的elasticsearch-head-chrome,也可以在Chrome网上应用店上找到

下面是通过docker 安装方式

docker pull mobz/elasticsearch-head:5

* Pulling from mobz/elasticsearch-head
75a822cd7888: Pulling fs layer 
57de64c72267: Pulling fs layer 
4306be1e8943: Pulling fs layer 
871436ab7225: Waiting 
0110c26a367a: Waiting 
1f04fe713f1b: Waiting 
723bac39028e: Waiting 
7d8cb47f1c60: Waiting 
7328dcf65c42: Waiting 
b451f2ccfb9a: Waiting 
304d5c28a4cf: Waiting 
4cf804850db1: Waiting 

启动head

docker run -d -p 9100:9100 --name elasticsearch-head mobz/elasticsearch-head:5
a31c966d1eec8c83fceefd0515df2f9e91986f08315d0a0d07b9ae261086d7d4
  • 然后浏览器访问 127.0.0.1:9100


    image.png

    出现这个界面表示 elasticsearch-head 安装成功
    但是发现“集群健康值:未连接” 说明没有和elasticsearch 连接成功,需要elasticsearch配置跨域

  • elasticsearch 跨域配置
    1.进入elasticsearch容器
 docker exec -it 9d53699397a8 /bin/bash
[root@9d53699397a8 elasticsearch]# 

2.安装vim

[root@9d53699397a8 elasticsearch]# yum install -y vim

3.修改/usr/share/elasticsearch/config/elasticsearch.yml

vim elasticsearch.yml

cluster.name: "docker-cluster"
network.host: 0.0.0.0

# minimum_master_nodes need to be explicitly set when bound on a public IP
# set to 1 to allow single node clusters
# Details: https://github.com/elastic/elasticsearch/pull/17288
discovery.zen.minimum_master_nodes: 1


 # headR件设置
http.cors.enabled: true
http.cors.allow-origin: "*"

3.重启容器

 docker restart 9d53699397a8
image.png
  • 使用 Logstash 将mysql 数据库数据同步到 elasticsearch
    1.下载
 wget https://artifacts.elastic.co/downloads/logstash/logstash-6.5.4.tar.gz

2.解压

tar -zvxf logstash-6.5.4.tar.gz 

3.修改jvm
jvm.options 默认
-Xms1g
-Xmx1g
我机器内存很小所以需要修改

/opt/logstash-6.5.4/config# vim jvm.options 

-Xms512m
-Xmx512m

4.运行

 /opt/logstash-6.5.4/bin#./logstash -e 'input { stdin { } } output { stdout {} }'

3.安装 jdbc 和 elasticsearch 插件

/opt/logstash-6.5.4# bin/logstash-plugin install logstash-input-jdbc
Validating logstash-input-jdbc
Installing logstash-input-jdbc
Installation successful
/opt/logstash-6.5.4# bin/logstash-plugin install logstash-output-elasticsearch
Validating logstash-output-elasticsearch
Installing logstash-output-elasticsearch
Installation successful

4.下载mysql-connector-java
5.编写配置文件 sync_table.conf
注意:数据库中删除的数据无法同步到ES中,只能同步insert update 数据

/opt/logstash-6.5.4/config# vim sync_table.conf
  
input {
  jdbc {
    # mysql相关jdbc配置
    jdbc_connection_string => "jdbc:mysql://127.0.0.1:3306/test?useUnicode=true&characterEncoding=utf-8&useSSL=false"
    jdbc_user => "root"
    jdbc_password => "123456"

    # jdbc连接mysql驱动的文件  此处路径一定要正确 否则会报com.mysql.cj.jdbc.Driver could not be loaded
    jdbc_driver_library => "/opt/logstash-6.5.4/sync_config/mysql-connector-java-8.0.12.jar"
    # the name of the driver class for mysql
    jdbc_driver_class => "com.mysql.cj.jdbc.Driver"
    jdbc_paging_enabled => true
    jdbc_page_size => "50000"

    jdbc_default_timezone =>"Asia/Shanghai"

    # mysql文件, 也可以直接写SQL语句在此处,如下:
    # 如果要使字段和实体类的驼峰命名法一致  则需要这样写sql  select d_name as dName, c_id as cId from area where update_time >= :sql_last_value order by update_time asc
    statement => "select * from area where update_time >= :sql_last_value order by update_time asc"
    # statement_filepath => "./config/jdbc.sql"

    # 这里类似crontab,可以定制定时操作,比如每分钟执行一次同步(分 时 天 月 年)
    schedule => "* * * * *"
    #type => "jdbc"
 

    # 是否记录上次执行结果, 如果为真,将会把上次执行到的 tracking_column 字段的值记录下来,保存到 last_run_metadata_path 指定的文件中
    #record_last_run => true

    # 是否需要记录某个column 的值,如果record_last_run为真,可以自定义我们需要 track 的 column 名称,此时该参数就要为 true. 否则默认 track 的是 timestamp 的值.
    use_column_value => true

    # 如果 use_column_value 为真,需配置此参数. track 的数据库 column 名,该 column 必须是递增的. 一般是mysql主键
    tracking_column => "update_time"

    tracking_column_type => "timestamp"

    last_run_metadata_path => "area_logstash_capital_bill_last_id"

    # 是否清除 last_run_metadata_path 的记录,如果为真那么每次都相当于从头开始查询所有的数据库记录
    clean_run => false

    #是否将 字段(column) 名称转小写
    #lowercase_column_names => false
  }
}

filter {
  date {
    match => [ "update_time", "yyyy-MM-dd HH:mm:ss" ]
    timezone => "Asia/Shanghai"
  }
}

output {
  elasticsearch {
    hosts => ["127.0.0.1:9200"]
    # index名 自定义 相当于数据库 对于实体类上@Document(indexName = "sys_core", type = "area")indexName
    index => "sys_core"  
    #索引的类型 相当于数据库里面的表 对于实体类上@Document(indexName = "sys_core", type = "area")type
    document_type => "area"
    #需要关联的数据库中有有一个id字段,对应索引的id号
    document_id => "%{id}"
    template_overwrite => true
  }

  # 这里输出调试,正式运行时可以注释掉
  stdout {
      codec => json_lines
  }
}
  1. 启动
/opt/logstash-6.5.4# bin/logstash -f config/sync_table.cfg

7.配置同步多张表
比如想同步tableA tableB tableC 3张表 则需要创建3个 sync_table.conf 文件 sync_tableA.conf sync_tableB.conf sync_tableC.conf
只是修改里面的sql语句和索引名
sync_table.conf 文件创建好后最后在 /opt/logstash-6.5.4/config/pipelines.yml 配置

- pipeline.id: table1
  path.config: "/opt/logstash-6.5.4/sync_config/sync_tableA.conf"
- pipeline.id: table2
  path.config: "/opt/logstash-6.5.4/sync_config/ sync_tableB.conf"
- pipeline.id: table3
  path.config: "/opt/logstash-6.5.4/sync_config/sync_tableC.conf"

然后启动

/opt/logstash-6.5.4# bin/logstash

最后成功同步数据

[2019-01-24T22:40:00,333][INFO ][logstash.inputs.jdbc     ] (0.013511s) SELECT version()
[2019-01-24T22:40:00,340][INFO ][logstash.inputs.jdbc     ] (0.002856s) SELECT version()
[2019-01-24T22:40:00,349][INFO ][logstash.inputs.jdbc     ] (0.009841s) SELECT version()
[2019-01-24T22:40:00,408][INFO ][logstash.inputs.jdbc     ] (0.005667s) SELECT count(*) AS `count` FROM (select * from area where update_time >= '2019-01-23 22:36:24' order by update_time asc) AS `t1` LIMIT 1
[2019-01-24T22:40:00,410][INFO ][logstash.inputs.jdbc     ] (0.002467s) SELECT count(*) AS `count` FROM (select * from dictionaries where update_time >= '2019-01-24 06:52:53' order by update_time asc) AS `t1` LIMIT 1
[2019-01-24T22:41:00,361][INFO ][logstash.inputs.jdbc     ] (0.000663s) SELECT version()

8.单机版(只有一个节点) 集群状态为yellow 和索引为Unassigned


image.png

image.png

这里解释一下为什么集群状态为yellow
由于我们是单节点部署elasticsearch,而默认的分片副本数目配置为1,而相同的分片不能在一个节点上,所以就存在副本分片指定不明确的问题,所以显示为yellow,我们可以通过在elasticsearch集群上添加一个节点来解决问题,如果你不想这么做,你可以删除那些指定不明确的副本分片(当然这不是一个好办法)但是作为测试和解决办法还是可以尝试的,下面我们试一下删除副本分片的办法

删除副本分片 即可解决

curl -H "Content-Type: application/json"   -X PUT http://localhost:9200/_settings -d  '{"number_of_replicas":0}'
{"acknowledged":true}

 curl -v http://localhost:9200/_cluster/health?pretty
*   Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 9200 (#0)
> GET /_cluster/health?pretty HTTP/1.1
> Host: localhost:9200
> User-Agent: curl/7.47.0
> Accept: */*
> 
< HTTP/1.1 200 OK
< content-type: application/json; charset=UTF-8
< content-length: 470
< 
{
  "cluster_name" : "docker-cluster",
  "status" : "green",
  "timed_out" : false,
  "number_of_nodes" : 1,
  "number_of_data_nodes" : 1,
  "active_primary_shards" : 10,
  "active_shards" : 10,
  "relocating_shards" : 0,
  "initializing_shards" : 0,
  "unassigned_shards" : 0,
  "delayed_unassigned_shards" : 0,
  "number_of_pending_tasks" : 0,
  "number_of_in_flight_fetch" : 0,
  "task_max_waiting_in_queue_millis" : 0,
  "active_shards_percent_as_number" : 100.0
}

image.png
  • Elasticsearch设置最大返回条数

解决异常

Caused by: org.elasticsearch.search.query.QueryPhaseExecutionException: Result window is too large, from + size must be less than or equal to: [10000] but was [100000]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting.

curl -H "Content-Type: application/json"   -X PUT http://localhost:9200/_settings -d  '{"max_result_window":2147483647}'

注意:

1.size的大小不能超过index.max_result_window这个参数的设置,默认为10,000。

2.需要搜索分页,可以通过from size组合来进行。from表示从第几行开始,size表示查询多少条文档。from默认为0,size默认为10;
通过页面设置方法参考:https://blog.csdn.net/chenhq_/article/details/77507956

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容