【阿旭机器学习实战】【13】决策树分类模型实战:泰坦尼克号生存预测

【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。

本文用机器学习中的决策树分类模型对泰坦尼克号生存项目进行预测。

关于决策树的详细介绍及原理参见前一篇博文【阿旭机器学习实战】【12】决策树基本原理及其构造与使用方法.

目录

决策树分类模型实战:泰坦尼克号生存预测

导入数据集并查看基本信息

import pandas as pd
titanic = pd.read_csv("../data/titanic.txt")
titanic.head()
row.names pclass survived name age embarked home.dest room ticket boat sex
0 1 1st 1 Allen, Miss Elisabeth Walton 29.0000 Southampton St Louis, MO B-5 24160 L221 2 female
1 2 1st 0 Allison, Miss Helen Loraine 2.0000 Southampton Montreal, PQ / Chesterville, ON C26 NaN NaN female
2 3 1st 0 Allison, Mr Hudson Joshua Creighton 30.0000 Southampton Montreal, PQ / Chesterville, ON C26 NaN (135) male
3 4 1st 0 Allison, Mrs Hudson J.C. (Bessie Waldo Daniels) 25.0000 Southampton Montreal, PQ / Chesterville, ON C26 NaN NaN female
4 5 1st 1 Allison, Master Hudson Trevor 0.9167 Southampton Montreal, PQ / Chesterville, ON C22 NaN 11 male
# 打印数据集表头
titanic.columns
Index(['row.names', 'pclass', 'survived', 'name', 'age', 'embarked',
       'home.dest', 'room', 'ticket', 'boat', 'sex'],
      dtype='object')

数据字段的含义:

数据集中有12 个字段,每一个字段的名称和含义如下
PassengerId:乘客 ID
Survived:是否生存
Pclass:客舱等级
Name:乘客姓名
Sex:性别
Age:年龄
SibSp:在船兄弟姐妹数/配偶数
Parch:在船父母数/子女数
Ticket:船票编号
Fare:船票价格
Cabin:客舱号
Embarked:登船港口

选择属性:通过分析发现某些属性(如:name)和是否生还没有关系

选择特征并进行特征处理

# 我们选择"pclass","age","sex"这三个主要特征进行模型训练
x = titanic[["pclass","age","sex"]]
y = titanic[["survived"]]

补全缺失值

x.isnull().any()
pclass    False
age        True
sex       False
dtype: bool
# 查看缺失
x.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1313 entries, 0 to 1312
Data columns (total 3 columns):
pclass    1313 non-null object
age       633 non-null float64
sex       1313 non-null object
dtypes: float64(1), object(2)
memory usage: 30.9+ KB
# 分析发现年龄缺失了一半,如果全都丢弃,数据损失过多
# 丢弃不行需要填补,用所有年龄的平均值来填补
x["age"].fillna(x["age"].mean(),inplace=True)

D:\anaconda3\lib\site-packages\pandas\core\generic.py:5430: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._update_inplace(new_data)
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)
x_train[:10]
pclass age sex
1220 3rd 31.194181 female
174 1st 46.000000 male
144 1st 35.000000 female
151 1st 46.000000 male
391 2nd 18.000000 male
563 2nd 25.000000 male
1260 3rd 31.194181 male
428 2nd 6.000000 female
580 2nd 36.000000 female
344 2nd 26.000000 male

特征处理:对特征进行向量化

from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse=False)#sparse=False意思是不产生稀疏矩阵
# 非数字类型的特征向量化
x_train = vec.fit_transform(x_train.to_dict(orient="record"))
x_train[:5]
array([[31.19418104,  0.        ,  0.        ,  1.        ,  1.        ,
         0.        ],
       [46.        ,  1.        ,  0.        ,  0.        ,  0.        ,
         1.        ],
       [35.        ,  1.        ,  0.        ,  0.        ,  1.        ,
         0.        ],
       [46.        ,  1.        ,  0.        ,  0.        ,  0.        ,
         1.        ],
       [18.        ,  0.        ,  1.        ,  0.        ,  0.        ,
         1.        ]])
x_train.shape
(984, 6)
x_test = vec.fit_transform(x_test.to_dict(orient="record"))
x_test.shape
(329, 6)

创建决策树模型,训练预测

dt = DecisionTreeClassifier()
dt.fit(x_train,y_train)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
y_pre = dt.predict(x_test)
y_pre[:10],y_test[:10]
(array([0, 0, 1, 0, 1, 0, 0, 0, 0, 0], dtype=int64),       survived
 908          0
 822          0
 657          1
 856          0
 212          1
 641          1
 305          0
 778          1
 818          1
 1179         0)
dt.score(x_test,y_test)
# score也成为准确性,只能从宏观上查看到一个模型的准确程度
0.7872340425531915

性能评测报告

from sklearn.metrics import classification_report
print(classification_report(y_pre,y_test,target_names=["died","servived"]))
             precision    recall  f1-score   support

       died       0.92      0.78      0.84       244
   servived       0.56      0.81      0.66        85

avg / total       0.83      0.79      0.80       329

性能评测报告的相关指标:

比如两个类别A和B,预测的情况会有四种:True A、True B、False A、False B
1、准确率(score):模型预测的正确的概率:score = (True A+True B)/(True A + True B + False A +False B)
2、精确率:表示的是每一个类别预测准确的数量占所有预测为该类别的数量的比例:precision_a = True A / (True A + False A)
3、召回率:表示的每一个类别预测正确的数量占这里类别真正数量的比例:recall_a = True A / (True A + False B)
4、F1指标:F1_a = 2/(1/precision_a + 1/recall_a) = 2*(precision_a*recall_a)/(precision_a+recall_a) 调和平均数,F1指标指的就是精确率和召回率的调和平均数,除了把精确率和召回率平均,还可以给两个指标相近的模型以较高的评分;
【注意】如果精确率和召回率差距太大,模型就不具备参考价值

如果内容对你有帮助,感谢点赞+关注哦!

更多干货内容持续更新中…

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容