携程一面:HashMap 的 hash 方法原理是什么?

看完这篇还不懂HashMap的hash原理,那我要哭了~

Warning:这是《Java 程序员进阶之路》专栏的第 55 篇,我们来分析一下 HashMap 的 hash 方法的原理。

本文 GitHub 上已同步,有 GitHub 账号的小伙伴,记得看完后给二哥安排一波 star 呀!冲一波 GitHub 的 trending 榜单,求求各位了。

GitHub 地址:https://github.com/itwanger/toBeBetterJavaer
在线阅读地址:https://itwanger.gitee.io/tobebetterjavaer


来看一下 hash 方法的源码(JDK 8 中的 HashMap):

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

这段代码究竟是用来干嘛的呢?

我们都知道,key.hashCode() 是用来获取键位的哈希值的,理论上,哈希值是一个 int 类型,范围从-2147483648到2147483648。前后加起来大概40亿的映射空间,只要哈希值映射得比较均匀松散,一般是不会出现哈希碰撞的。

但问题是一个40亿长度的数组,内存是放不下的。HashMap扩容之前的数组初始大小只有16,所以这个哈希值是不能直接拿来用的,用之前要对对数组的长度做取模运算,用得到的余数来访问数组下标。

取模运算有两处。

取模运算(“Modulo Operation”)和取余运算(“Remainder Operation ”)两个概念有重叠的部分但又不完全一致。主要的区别在于对负整数进行除法运算时操作不同。取模主要是用于计算机术语中,取余则更多是数学概念。

一处是往 HashMap 中 put 的时候(putVal 方法中):

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
     HashMap.Node<K,V>[] tab; HashMap.Node<K,V> p; int n, i;
     if ((tab = table) == null || (n = tab.length) == 0)
         n = (tab = resize()).length;
     if ((p = tab[i = (n - 1) & hash]) == null)
         tab[i] = newNode(hash, key, value, null);
}

一处是从 HashMap 中 get 的时候(getNode 方法中):

final Node<K,V> getNode(int hash, Object key) {
     Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
     if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {}
}

其中的 (n - 1) & hash 正是取模运算,就是把哈希值和(数组长度-1)做了一个“与”运算。

可能大家在疑惑:取模运算难道不该用 % 吗?为什么要用 &

这是因为 & 运算比 % 更加高效,并且当 b 为 2 的 n 次方时,存在下面这样一个公式。

a % b = a & (b-1)

用 2n 替换下 b 就是:

a % 2n = a & (2n-1)

我们来验证一下,假如 a = 14,b = 8,也就是 23,n=3。

14%8,14 的二进制为1110,8的二进制1000,8-1 = 7的二进制为0111,1110&0111=0110,也就是 0*20+1*21+1*22+0*23=0+2+4+0=6,14%8 刚好也等于 6。

这也正好解释了为什么HashMap的数组长度要取2的整次方。

因为(数组长度-1)正好相当于一个“低位掩码”——这个掩码的低位最好全是 1,这样 & 操作才有意义,否则结果就肯定是 0,那么 & 操作就没有意义了。

a&b 操作的结果是:a、b中对应位同时为1,则对应结果位为1,否则为 0

2的整次幂刚好是偶数,偶数-1 是奇数,奇数的二进制最后一位是 1,保证了 hash &(length-1) 的最后一位可能为 0,也可能为 1(这取决于 h 的值),即 & 运算后的结果可能为偶数,也可能为奇数,这样便可以保证哈希值的均匀性。

& 操作的结果就是将哈希值的高位全部归零,只保留低位值,用来做数组下标访问。

假设某哈希值为 10100101 11000100 00100101,用它来做取模运算,我们来看一下结果。HashMap 的初始长度为 16(内部是数组),16-1=15,二进制是 00000000 00000000 00001111(高位用 0 来补齐):

    10100101 11000100 00100101
&   00000000 00000000 00001111
----------------------------------
    00000000 00000000 00000101

因为 15 的高位全部是 0,所以 & 运算后的高位结果肯定是 0,只剩下 4 个低位 0101,也就是十进制的 5,也就是将哈希值为 10100101 11000100 00100101 的键放在数组的第 5 位。

明白了取模运算后,我们再来看 put 方法的源码:

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

以及 get 方法的源码:

public V get(Object key) {
    HashMap.Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

它们在调用 putVal 和 getNode 之前,都会先调用 hash 方法:

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

那为什么取模运算之前要调用 hash 方法呢?

看下面这个图。

某哈希值为 11111111 11111111 11110000 1110 1010,将它右移 16 位(h >>> 16),刚好是 00000000 00000000 11111111 11111111,再进行异或操作(h ^ (h >>> 16)),结果是 11111111 11111111 00001111 00010101

异或(^)运算是基于二进制的位运算,采用符号XOR或者^来表示,运算规则是:如果是同值取0、异值取1

由于混合了原来哈希值的高位和低位,所以低位的随机性加大了(掺杂了部分高位的特征,高位的信息也得到了保留)。

结果再与数组长度-1(00000000 00000000 00000000 00001111)做取模运算,得到的下标就是 00000000 00000000 00000000 00000101,也就是 5。

还记得之前我们假设的某哈希值 10100101 11000100 00100101 吗?在没有调用 hash 方法之前,与 15 做取模运算后的结果也是 5,我们不妨来看看调用 hash 之后的取模运算结果是多少。

某哈希值 00000000 10100101 11000100 00100101(补齐 32 位),将它右移 16 位(h >>> 16),刚好是 00000000 00000000 00000000 10100101,再进行异或操作(h ^ (h >>> 16)),结果是 00000000 10100101 00111011 10000000

结果再与数组长度-1(00000000 00000000 00000000 00001111)做取模运算,得到的下标就是 00000000 00000000 00000000 00000000,也就是 0。

综上所述,hash 方法是用来做哈希值优化的,把哈希值右移16位,也就正好是自己长度的一半,之后与原哈希值做异或运算,这样就混合了原哈希值中的高位和低位,增大了随机性。

说白了,hash 方法就是为了增加随机性,让数据元素更加均衡的分布,减少碰撞


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349

推荐阅读更多精彩内容

  • 背景 无论在HashMap中进行查找、插入还是删除操作,都需要计算key的hashCode(),然后根据hashc...
    袁小象阅读 1,776评论 0 0
  • 1.hash 哈希算法也叫散列,就是把任意长度的key值通过散列算法变成固定长度的key值的地址,我们通过这个地址...
    challenge_fan阅读 228评论 0 1
  • HashMap 内部是一个散列表(数组?),存放时取 key 的 hashCode 作为 index 位,如果出现...
    xiangR阅读 266评论 0 1
  • 众所周知,HashMap 是一个用于存储Key-Value键值对的集合,每一个键值对也叫做 Entry。 这些个键...
    luckyboy2阅读 2,151评论 0 1
  • 16宿命:用概率思维提高你的胜算 以前的我是风险厌恶者,不喜欢去冒险,但是人生放弃了冒险,也就放弃了无数的可能。 ...
    yichen大刀阅读 6,041评论 0 4