机器学习之支持向量机(中)

这一节,我们来讲解一下什么叫做核技巧,也就是kernal trick

img

前面我们讲的hard margin和soft margin分别是线性可分,线性不可分的情况,但是我们的支持向量机都是线性支持向量机,但是还有一种情况就是:非线性可分

如图,我们在低维情况下无法用超平面解决的分类问题。

所以,我们就要使用核技巧

所以,什么是核技巧

对于上面的非线性可分问题,我们解决的思路,就是通过映射函数将数据升维到高维空间,然后非线性可分问题就变成了线性可分问题。但是,我们需要知道一个概念:维数灾难

什么是维数灾难呢?

维数灾难(英语:curse of dimensionality,又名维度的诅咒)是一个最早由理查德·贝尔曼(Richard E. Bellman)在考虑优化问题时首次提出来的术语,用来描述当(数学)空间维度增加时,分析和组织高维空间(通常有成百上千维),因体积指数增加而遇到各种问题场景。这样的难题在低维空间中不会遇到,如物理空间通常只用三维来建模。

举例来说,100个平均分布的点能把一个单位区间以每个点距离不超过0.01采样;而当维度增加到10后,如果以相邻点距离不超过0.01小方格采样一单位超正方体,则需要1020 个采样点:所以,这个10维的超正方体也可以说是比单位区间大1018倍。(这个是理查德·贝尔曼所举的例子)

所以,并不是维度高了,我们就可以解决这个问题了。

所以,这里就体现出了核函数的重要性:

什么是核函数

简单的说就是,低维的一个方法k(x,y)可以达到高维映射函数的效果,那么这个函数就是核函数。

所以采用核函数,我们就可以在将数据升维的同时,避免了维度灾难带来的巨大计算量。

举个例子:

img

公式推导

首先,我们回忆一下前面的公式,在最后,我们得到了:
min L(\omega, b, \lambda) = \frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N\alpha_i\alpha_jy_iy_j(x_ix_j)-\sum_{i=1}^N\alpha_i
现在,我们通过核技巧,将原来低维空间中数据的内积变为高维特征空间中的内积,用核函数的形式表示:
min L(\omega, b, \lambda) = \frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N\alpha_i\alpha_jy_iy_jk(x_i, x_j)-\sum_{i=1}^N\alpha_i

常用核函数

  1. 多项式核函数
    K(x, z) = (xz+1)^p
    对应的分类决策函数:
    f(x) = sign(\sum_{i=1}^N a_i^*y_i(x_ix_j+1)^p+b^*)

  2. 高斯核函数
    K(x, z) = exp(-\frac{||x-z||^2}{2\sigma^2})
    高斯径向基函数分类器,分类决策函数为:
    f(x) = sign(\sum_{i=1}^N a_i^*y_iexp(-\frac{||x_i-x_j||^2}{2\sigma^2})+b^*)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容