1.创建数据集/矩阵【data.frame数据框、matrix矩阵、array数组】
#数据框:将字段以列合并在一起。
leadership <- data.frame(manager, date ,country, gender, age, q1,q2,q3,q4,q5, stringsAsFactors=F)
#矩阵:通过调整参数,控制矩阵样式。
m1 <- matrix(c(1:6),nrow=2,ncol=3,dimnames=list(c("r1","r2"),c("c1","c2","c3")))
m2 <- matrix(1:6,nrow=2) #共6个元素,分2行,每行3个元素,未指定行名和列名
m3 <- matrix(1:6,ncol=3) #共6个元素,结果与创建形式2相同
m4 <- matrix(nr=2,nc=3) #未指定元素数据,默认为NA,2行3列,nr是nrow的简写,nc是ncol的简写,R能识别
#数组
mydata <- array(1:12,c(2,3,2),dimnames=list(c("r1","r2"),c("c1","c2","c3"),c("h1","h2")) #myarray <- array(vector, dimensions, dimnames)
#factor和list
#factor是numeric数值类型
factor(x = character(), levels, labels = levels,exclude = NA, ordered = is.ordered(x), nmax = NA)
#注意:levels与labels的对应关系,其中levels发挥角标作用,与labels位置对应例如:
x <- c("Man","Male","Man","Lady","Female")
xf <- factor(x, levels = c("Male", "Man" , "Lady", "Female"),labels = c("Male", "Male", "Female", "Female"))
#> xf
#[1] Male Male Male Female Female
#Levels: Male Female
#数据列表:可用于合并多个不同类型数据字段,例如:
pts <- list(x = cars[,1], y = cars[,2])
2.向数据集中增加列【transform、cbind、merge】
#方法一:
leadership <- transform(leadership,meanx= (q1+q2+q3+q4+q5)/5)
#方法二:
leadership$x <- c(1,1,1,1,1)
#方法三:
cbind(leadership,x)
#方法四:
merge student1<-data.frame(ID,name)student2<-data.frame(ID,score)total_student<-merge(student1,student2,by="ID")
3.向数据集中增加行【rbind】
#方法一:(需注意变量个数相等)
leadership[6,] <- c(6,"5/1/09","US","M",25,1,1,1,1,1,1,1,1,1)
#方法二:
rbindID<-c(1,2,3)
name<-c("Jame","Kevin","Sunny")
student1<-data.frame(ID,name)
ID<-c(4,5,6)name<-c("Sun","Frame","Eric")
student2<-data.frame(ID,name)total<-rbind(student1,student2)
4.修改数据/批量修改数据/重定义(列)数据【修改指定单元格/列】
leadership$age[leadership$age==99] <- NA
leadership$agecat2 <- NA
leadership <- within(leadership,{
agecat2[age>75] <- "Elder"
agecat2[age>=55 & age<=75] <- "Middle Aged"
agecat2[age<55] <- "Young"})
5.修改变量名【rname】
library(plyr)
leadership <- rename(leadership,c(manager="managerID", date="testDate"))
6.排序【order,其中默认升序,变量前加“-”代表降序】
leadership[order(age),]
leadership[order(gender,age),]
leadership[order(gender,-age),]
7.数据筛选【条件筛选、&、|】
leadership <- data.frame(manager, date ,country, gender, age, q1,q2,q3,q4,q5, stringsAsFactors=F)
#筛选指定字段
leadership[,c(6:10)]
等同:leadership[c("q1","q2","q3","q4","q5")]
等同:myvars <- paste("q",1:5,sep="")
#条件筛选(和、且)
leadership[gender=='M' & age>30,]
#且
subset(leadership, age>=35 | age<24, select=gender:q4) #or条件筛选+列筛选
8.抽样
leadership[sample(1:nrow(leadership),3,replace=F),] #replace=T说明不可以重复抽样
9.设置有效数字【digits】
options(digits=3)
10.【进阶】数据库相关dplyr
install.packages("dplyr")
library(dplyr)】
dplyr包最常使用的函数主要包括以下几个:
变量筛选函数:select
数据筛选函数:filter
排序函数:arrange
变形函数:mutate
汇总函数:summarize
分组函数:group_by
管道连接符:%>%
随机抽样函数:sample_n, sample_frac
参考来源:
https://blog.csdn.net/sinat_26917383/article/details/50676894 https://blog.csdn.net/u013421629/article/details/77744251
https://www.cnblogs.com/waxblogs/p/4398278.html (R语言学习笔记——数据结构 & 数据框基本操作)
https://blog.csdn.net/u011596455/article/details/79608475(R语言-数据预处理