一、 二叉树的顺序存储
1.顺序二叉树创建
typedef int CElemType; // 树结点的数据类型
typedef CElemType SqBiTree[MAX_TREE_SIZE]; // 存储结点
CElemType Nil = 0; //设以0为空
typedef struct {
int level; //结点层
int order; //本层的序号(按照满二叉树给定序号规则)
}Position;
2.构造空顺序二叉树
Status InitBiTree(SqBiTree T){
for (int i = 0; i < MAX_TREE_SIZE; i++) {
//将二叉树初始化值置空
T[i] = Nil;
}
return OK;
}
3.按层序次序输入二叉树中的结点值
Status CreateBiTree(SqBiTree T){
int i = 0;
while (i < 10) {
T[i] = i+1;
printf("%d ",T[i]);
//结点不为空,且无双亲结点
if (i != 0 && T[(i+1)/2-1] == Nil && T[i] != Nil) {
printf("出现无双亲的非根结点%d\n",T[i]);
exit(ERROR);
}
i++;
}
//将空赋值给T的后面的结点
while (i < MAX_TREE_SIZE) {
T[i] = Nil;
i++;
}
return OK;
}
4.获取二叉树的深度
int BiTreeDepth(SqBiTree T){
int j = -1;
int i;
//找到最后一个结点
//MAX_TREE_SIZE -> 100 -> 10 目的找到最后一个结点10的位置
for (i = MAX_TREE_SIZE-1 ; i>=0; i--) {
if (T[i] != Nil)
break;
}
do {
j++;
} while ( powl(2, j) <= i); //计算2的次幂
return j;
}
5.返回处于位置e(层,本层序号)的结点值
CElemType Value(SqBiTree T,Position e){
//pow(2,e.level-1) 找到层序
printf("%d\n",(int)pow(2,e.level-1));
//e.order
printf("%d\n",e.order);
//4+2-2;
return T[(int)pow(2, e.level-1)+e.order-2];
}
6.获取e的父节点
CElemType Parent(SqBiTree T, CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 1 ; i < MAX_TREE_SIZE; i++) {
//找到e
if (T[i] == e) {
return T[(i+1)/2 - 1];
}
}
//没有找到
return Nil;
}
7.获取某个结点的左孩子
CElemType LeftChild(SqBiTree T,CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
//找到e
if (T[i] == e) {
return T[i*2+1];
}
}
//没有找到
return Nil;
}
8.获取某个结点的右孩子
CElemType RightChild(SqBiTree T,CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
//找到e
if (T[i] == e) {
return T[i*2+2];
}
}
//没有找到
return Nil;
}
9.获取结点的左兄弟
CElemType LeftSibling(SqBiTree T,CElemType e)
{
/* 空树 */
if(T[0]==Nil)
return Nil;
for(int i=1;i<=MAX_TREE_SIZE-1;i++)
/* 找到e且其序号为偶数(是右孩子) */
if(T[i]==e&&i%2==0)
return T[i-1];
return Nil; /* 没找到e */
}
10.获取结点的右兄弟
CElemType RightSibling(SqBiTree T,CElemType e)
{
/* 空树 */
if(T[0]==Nil)
return Nil;
for(int i=1;i<=MAX_TREE_SIZE-1;i++)
/* 找到e且其序号为奇数(是左孩子) */
if(T[i]==e&&i%2==1)
return T[i+1];
return Nil; /* 没找到e */
}
11.层序遍历二叉树
void LevelOrderTraverse(SqBiTree T){
int i = MAX_TREE_SIZE-1;
//找到最后一个非空结点的序号
while (T[i] == Nil) i--;
//从根结点起,按层序遍历二叉树
for (int j = 0; j <= i; j++)
//只遍历非空结点
if (T[j] != Nil)
visit(T[j]);
printf("\n");
}
12.前序遍历二叉树
void PreTraverse(SqBiTree T,int e){
//打印结点数据
visit(T[e]);
//先序遍历左子树
if (T[2 * e + 1] != Nil) {
PreTraverse(T, 2*e+1);
}
//最后先序遍历右子树
if (T[2 * e + 2] != Nil) {
PreTraverse(T, 2*e+2);
}
}
Status PreOrderTraverse(SqBiTree T){
//树不为空
if (!BiTreeEmpty(T)) {
PreTraverse(T, 0);
}
printf("\n");
return OK;
}
13.中序遍历
void InTraverse(SqBiTree T, int e){
/* 左子树不空 */
if (T[2*e+1] != Nil)
InTraverse(T, 2*e+1);
visit(T[e]);
/* 右子树不空 */
if (T[2*e+2] != Nil)
InTraverse(T, 2*e+2);
}
Status InOrderTraverse(SqBiTree T){
/* 树不空 */
if (!BiTreeEmpty(T)) {
InTraverse(T, 0);
}
printf("\n");
return OK;
}
14.后序遍历
void PostTraverse(SqBiTree T,int e)
{ /* 左子树不空 */
if(T[2*e+1]!=Nil)
PostTraverse(T,2*e+1);
/* 右子树不空 */
if(T[2*e+2]!=Nil)
PostTraverse(T,2*e+2);
visit(T[e]);
}
Status PostOrderTraverse(SqBiTree T)
{
if(!BiTreeEmpty(T)) /* 树不空 */
PostTraverse(T,0);
printf("\n");
return OK;
}
二、 二叉树的链式存储
1.链式二叉树节点设计
typedef char CElemType;
CElemType Nil=' '; /* 字符型以空格符为空 */
typedef struct BiTNode /* 结点结构 */
{
CElemType data; /* 结点数据 */
struct BiTNode *lchild,*rchild; /* 左右孩子指针 */
}BiTNode,*BiTree;
2.构造空二叉树
Status InitBiTree(BiTree *T)
{
*T=NULL;
return OK;
}
3.销毁二叉树
void DestroyBiTree(BiTree *T)
{
if(*T)
{
/* 有左孩子 */
if((*T)->lchild)
DestroyBiTree(&(*T)->lchild); /* 销毁左孩子子树 */
/* 有右孩子 */
if((*T)->rchild)
DestroyBiTree(&(*T)->rchild); /* 销毁右孩子子树 */
free(*T); /* 释放根结点 */
*T=NULL; /* 空指针赋0 */
}
}
4.创建二叉树
void CreateBiTree(BiTree *T){
CElemType ch;
//获取字符
ch = str[indexs++];
//判断当前字符是否为'#'
if (ch == '#') {
*T = NULL;
}else
{
//创建新的结点
*T = (BiTree)malloc(sizeof(BiTNode));
//是否创建成功
if (!*T) {
exit(OVERFLOW);
}
/* 生成根结点 */
(*T)->data = ch;
/* 构造左子树 */
CreateBiTree(&(*T)->lchild);
/* 构造右子树 */
CreateBiTree(&(*T)->rchild);
}
}
5.二叉树T的深度
int BiTreeDepth(BiTree T){
int i,j;
if(!T)
return 0;
//计算左孩子的深度
if(T->lchild)
i=BiTreeDepth(T->lchild);
else
i=0;
//计算右孩子的深度
if(T->rchild)
j=BiTreeDepth(T->rchild);
else
j=0;
//比较i和j
return i>j?i+1:j+1;
}
6.前序递归遍历
void PreOrderTraverse(BiTree T)
{
if(T==NULL)
return;
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
PreOrderTraverse(T->lchild); /* 再先序遍历左子树 */
PreOrderTraverse(T->rchild); /* 最后先序遍历右子树 */
}
7.中序递归遍历
void InOrderTraverse(BiTree T)
{
if(T==NULL)
return ;
InOrderTraverse(T->lchild); /* 中序遍历左子树 */
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
InOrderTraverse(T->rchild); /* 最后中序遍历右子树 */
}
8.后序递归遍历
void PostOrderTraverse(BiTree T)
{
if(T==NULL)
return;
PostOrderTraverse(T->lchild); /* 先后序遍历左子树 */
PostOrderTraverse(T->rchild); /* 再后序遍历右子树 */
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
}