ML训练营笔记3

线性回归

  1. 属于有监督学习模型

  2. 输出的结果​y_i是连续变量值

  3. 需要学习映射​f:X \rightarrow Y

  4. 假设输入和输出之间存在线性关系

  5. 在预测阶段,给定输入预测其输出:

f:X \rightarrow Y

多变量情形

\begin{align} h_{\theta}(x) & =\theta_0+\theta_1x_1+\theta_2x_2 \\ & = \sum^T_{i=0} \theta_ix_i \\ & = \theta^Tx \end{align}

损失函数

线性回归中的损失函数使用的是平方损失函数,其表达式

J(\theta_0,\theta_1,...,\theta_n)=\frac{1}{2m}\sum^m_{i=1}(h_{\theta}(x^{(i)})-y^{(i)})^2

目标:使得损失最小化

梯度下降算法

  • 逐步最小化损失函数的过程

  • 如同下山,找准方向(斜率),每次迈进一小步,直至山底

原始形式:

\theta_j:=\theta_j-\alpha \frac {\partial J(\theta_0,\theta_1,...,\theta_n)}{\partial \theta_j}

将代价函数J​带进去:

\theta_j:=\theta_j-\frac{1}{2m} \alpha \frac {\partial \sum^m_{i=1}(h_{\theta}(x^{(i)})-y^{(i)})^2}{\partial \theta_j}

求导数之后:

\theta_j:=\theta_j-\frac{1}{m} \alpha \sum^m_{i=1}((h_{\theta}(x^{(i)})-y^{(i)})\cdot x_j^{(i)}

当​n \geq 1时:

\theta_0:=\theta_0-\frac{1}{m} \alpha \sum^m_{i=1}((h_{\theta}(x^{(i)})-y^{(i)})\cdot x_0^{(i)}

\theta_1:=\theta_1-\frac{1}{m} \alpha \sum^m_{i=1}((h_{\theta}(x^{(i)})-y^{(i)})\cdot x_1^{(i)}

\theta_2:=\theta_2-\frac{1}{m} \alpha \sum^m_{i=1}((h_{\theta}(x^{(i)})-y^{(i)})\cdot x_2^{(i)}

过拟合问题

模型特征多,模型比较复杂,对原始数据拟合的很好,但是对新的数据预测效果差。

MzINad.png

正则化

正则化技术主要是为了解决过拟合的问题。过拟合指的是:对现有的样本数据具有很好的判断能力,但是对新的数据预测能力很差。

对于过拟合的处理:

  1. 丢弃一些不能正确预测的特征。可以是手工选择保留哪些特征,或者使用一些模型选择的算法,例如PCA

  2. 正则化。 保留所有的特征,但是减少参数的大小(magnitude

  3. 加入正则化参数后能够防止过拟合问题,其中​是正则化参数Regularization Parameter

J(\theta)=\frac{1}{2m}\sum^m_{i=1}(h_{\theta}(x^{(i)})-y^{(i)})^2+\lambda \sum^n_{j=1}\theta^2_{j}

Attention:一般地,不对​进行惩罚;加上正则化参数实际上是对参数​进行惩罚。

  • 太小:约束不了
  • ​太大:平方损失函数有后面的正则项决定,这不是我们希望看到的

逻辑斯蒂回归

对离散值进行分类,激活函数是​sigmoid(x)=\frac{1}{1+e^{-x}},也称之为压缩函数

h_\theta(x)=g(z)= \frac{1}{1+e^{-\theta^TX}}

损失函数

Cost(h_\theta(x), y) = \begin{cases} -\log(h_\theta(x)), & \text{y=1} \\ -\log(1-h_\theta(x)), & \text{y=0} \\ \end{cases}

加入正则项:

J(\theta)=\frac{1}{m}\sum^m_{i=1}[-y^{(i)}\log(h_\theta(x^{(i)}))-(1-y^{(i)})\log(1-h_\theta(x^{i}))]+\frac{\lambda}{2m}\sum^n_{j=1}\theta^2_j

LR特点

  • LR是以概率的形式输出,而不是0-1判定
  • 可解释性强,可控度高
  • 训练快,做排序模型

LR主要应用

  1. CTR预估/推荐系统中的learning to rank/各种分类场景
  2. 电商搜索排序/广告CTR预估基线版是LR
  3. 电商的购物搭配推荐使用了大量的LR
  4. 新闻APP排序基线是LR
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,490评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,581评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,830评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,957评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,974评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,754评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,464评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,847评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,995评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,137评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,819评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,482评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,023评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,149评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,409评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,086评论 2 355