正态性检验之qqplot和ppplot原理及R语言实现

1. 简单实现qq图

输入为一个vector,我们以a <- seq(1, 250, 1)做为示例数据

a <- seq(1, 250, 1)

利用qqnorm函数直接绘制出了如下正态检验qq图

qqnorm(a)
image

还可以进一步使用qqline命令在qq图上加上标准直线

qqline(a, col=2, lwd=2)  # 设置为红色加粗

注:qqline的默认算法为向量a上四分位数和下四分位数对应两个点的连线

By default qqline draws a line through the first and third quartiles[1].

2. 了解基本原理,手动实现qq plot

Step 1: 首先我们算出vector中每一个数对应的百分位数
  在向量a中,数字1对应的累积比例(即小于等于数字1的频率)为1/length(a) = 0.04,数字250对应的累积比例为250/length(a) = 100%

t <- rank(a)/length(a)

rank()函数作用是计算出某数在该向量中从小到大排列的序号

  
Step 2: 根据累积比例数计算出正态分布对应的百分位数值

q <- qnorm(t)

  直接绘制点图即为qqplot图

plot(q, a)

  

Step 3: 可以查看一下q值发现,最后的q值为Inf
  这是因为百分位100%对应的正态分布数值为无穷大,所以最后得出的图与R自带的qqnorm的稍微有一点点区别,这是因为在内置的qqnorm函数中对累积百分数进行了调整,为了避免inf的出现,使用 t <- (rank(a) -0.5)/length(a) 调整后得出的结果与qqnorm的结果图就完全一致了。

tips:qnorm可以随不同待检验的分布而调整(如qt,qf...)


Step 4: 绘制标准直线
  如果是依据标准正态分布做的qq图,则标准直线截距为mean(a),斜率为sd(a)

a <- seq(1, 250, 1)
t <- (rank(a) -0.5)/length(a)
q <- qnorm(t)
plot(q, a)
abline(mean(a), sd(a), col=2, lwd=2)

[图片上传失败...(image-50be7a-1512789490785)]
  如果是依据(mean(a), var(a))正态分布做的qq图,则标准直线为y=x

a <- seq(1, 250, 1)
t <- (rank(a) -0.5)/length(a)
q <- qnorm(t, mean=mean(a), sd=sd(a))
plot(q, a)
abline(0, 1, col=2, lwd=2)

[图片上传失败...(image-4e2370-1512789490785)]

3. pp plot绘制原理

pp plot横轴为实际累积概率,即上文qq plot中的变量t
纵轴为期望累积的概率,标准直线为 y=x

a <- seq(1, 250, 1)
plot((rank(a)-0.5)/length(a), pnorm(mean=mean(a), sd=sd(a), a), main="PP plot")
# abline(0, 1)
ppplot1

总结:

1. qqnorm()可以直接绘制正态分布检验的qqplot

set.seed(100)
qqnorm(rnorm(200)) 

[图片上传失败...(image-682bd0-1512789490785)]

结果大致呈一条直线则说明大致服从正态分布

2. 手动实现

set.seed(100)
a <- rnorm(200)
t <- (rank(a)-0.5)/length(a)
plot(qnorm(t), a)

快速计算累积百分数的方法:

t <- ppoints(length(a))
plot(qnorm(t), sort(a)) #或者直接使用qqplot(qnorm(t), a)
abline(mean(a), sd(a), lwd=2, col="red")

[图片上传失败...(image-de8e63-1512789490785)]

car包绘制qq图及95%置信区间

set.seed(100)
a <- rnorm(100)
library(car)
qqPlot(a, main="qq plot", col="blue", col.lines="red")
car_qqplot.png

参考:
https://wenku.baidu.com/view/c661ebb365ce050876321319.html
http://data.library.virginia.edu/understanding-q-q-plots/
http://www.cnblogs.com/xianghang123/archive/2012/08/08/2628623.html
https://d.cosx.org/d/18521-18521

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,311评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,339评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,671评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,252评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,253评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,031评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,340评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,973评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,466评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,937评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,039评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,701评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,254评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,259评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,497评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,786评论 2 345

推荐阅读更多精彩内容