Bit Manipulation

Wiki

Bit manipulation is the act of algorithmically manipulating bits or other pieces of data shorter than a word. Computer programming tasks that require bit manipulation include low-level device control, error detection and correction algorithms, data compression, encryption algorithms, and optimization. For most other tasks, modern programming languages allow the programmer to work directly with abstractions instead of bits that represent those abstractions. Source code that does bit manipulation makes use of the bitwise operations: AND, OR, XOR, NOT, and bit shifts.

Bit manipulation, in some cases, can obviate or reduce the need to loop over a data structure and can give many-fold speed ups, as bit manipulations are processed in parallel, but the code can become more difficult to write and maintain.

Details

Basics

At the heart of bit manipulation are the bit-wise operators & (and), | (or), ~ (not) and ^ (exclusive-or, xor) and shift operators a << b and a >> b.

There is no boolean operator counterpart to bitwise exclusive-or, but there is a simple explanation. The exclusive-or operation takes two inputs and returns a 1 if either one or the other of the inputs is a 1, but not if both are. That is, if both inputs are 1 or both inputs are 0, it returns 0. Bitwise exclusive-or, with the operator of a caret, ^, performs the exclusive-or operation on each pair of bits. Exclusive-or is commonly abbreviated XOR.

  • Set union A | B
  • Set intersection A & B
  • Set subtraction A & ~B
  • Set negation ALL_BITS ^ A or ~A
  • Set bit A |= 1 << bit
  • Clear bit A &= ~(1 << bit)
  • Test bit (A & 1 << bit) != 0
  • Extract last bit A&-A or A&~(A-1) or x^(x&(x-1))
  • Remove last bit A&(A-1)
  • Get all 1-bits ~0

Examples

Count the number of ones in the binary representation of the given number

int count_one(int n) {
    while(n) {
        n = n&(n-1);
        count++;
    }
    return count;
}

Is power of four (actually map-checking, iterative and recursive methods can do the same)

bool isPowerOfFour(int n) {
    return !(n&(n-1)) && (n&0x55555555);
    //check the 1-bit location;
}

^ tricks

Use ^ to remove even exactly same numbers and save the odd, or save the distinct bits and remove the same.

Sum of Two Integers

Use ^ and & to add two integers

/*1.Why carry is a&b:
If a and b are both 1 at the same digit, it creates one carry.
Because you can only use 0 and 1 in binary, if you add 1+1 together, it will roll that over to the next digit, and the value will be 0 at this digit.
if they are both 0 or only one is 1, it doesn't need to carry.

Use ^ operation between a and b to find the different bit
In my understanding, using ^ operator is kind of adding a and b together (a+b) but ignore the digit that a and b are both 1,
because we already took care of this in step1.
*/
int getSum(int a, int b) {
    return b==0? a:getSum(a^b, (a&b)<<1); //be careful about the terminating condition;
}

Missing Number

Given an array containing n distinct numbers taken from 0, 1, 2, ..., n, find the one that is missing from the array. For example, Given nums = [0, 1, 3] return 2. (Of course, you can do this by math.)

int missingNumber(vector<int>& nums) {
    int ret = 0;
    for(int i = 0; i < nums.size(); ++i) {
        ret ^= i;
        ret ^= nums[i];
    }
    return ret^=nums.size();
}

| tricks

Keep as many 1-bits as possible

Find the largest power of 2 (most significant bit in binary form), which is less than or equal to the given number N.

long largest_power(long N) {
    //changing all right side bits to 1.
    N = N | (N>>1);
    N = N | (N>>2);
    N = N | (N>>4);
    N = N | (N>>8);
    N = N | (N>>16);
    return (N+1)>>1;
}

Reverse Bits

Reverse bits of a given 32 bits unsigned integer.

Solution
uint32_t reverseBits(uint32_t n) {
    unsigned int mask = 1<<31, res = 0;
    for(int i = 0; i < 32; ++i) {
        if(n & 1) res |= mask;
        mask >>= 1;
        n >>= 1;
    }
    return res;
}

uint32_t reverseBits(uint32_t n) {
    uint32_t mask = 1, ret = 0;
    for(int i = 0; i < 32; ++i){
        ret <<= 1;
        if(mask & n) ret |= 1;
        mask <<= 1;
    }
    return ret;
}

& tricks

Just selecting certain bits

Reversing the bits in integer

x = ((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1);
x = ((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2);
x = ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4);
x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
x = ((x & 0xffff0000) >> 16) | ((x & 0x0000ffff) << 16);

Bitwise AND of Numbers Range

Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers in this range, inclusive. For example, given the range [5, 7], you should return 4.

Solution
int rangeBitwiseAnd(int m, int n) {
    int a = 0;
    while(m != n) {
        m >>= 1;
        n >>= 1;
        a++;
    }
    return m<<a; 
}

Number of 1 Bits

Write a function that takes an unsigned integer and returns the number of ’1' bits it has (also known as the Hamming weight).

Solution
int hammingWeight(uint32_t n) {
    int count = 0;
    while(n) {
        n = n&(n-1);
        count++;
    }
    return count;
}

int hammingWeight(uint32_t n) {
    ulong mask = 1;
    int count = 0;
    for(int i = 0; i < 32; ++i){ //31 will not do, delicate;
        if(mask & n) count++;
        mask <<= 1;
    }
    return count;
}

Application

Repeated DNA Sequences

All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACGAATTCCG". When studying DNA, it is sometimes useful to identify repeated sequences within the DNA. Write a function to find all the 10-letter-long sequences (substrings) that occur more than once in a DNA molecule.
For example,
Given s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT",
Return: ["AAAAACCCCC", "CCCCCAAAAA"].

Solution
class Solution {
public:
    vector<string> findRepeatedDnaSequences(string s) {
        int sLen = s.length();
        vector<string> v;
        if(sLen < 11) return v;
        char keyMap[1<<21]{0};
        int hashKey = 0;
        for(int i = 0; i < 9; ++i) hashKey = (hashKey<<2) | (s[i]-'A'+1)%5;
        for(int i = 9; i < sLen; ++i) {
            if(keyMap[hashKey = ((hashKey<<2)|(s[i]-'A'+1)%5)&0xfffff]++ == 1)
                v.push_back(s.substr(i-9, 10));
        }
        return v;
    }
};

But the above solution can be invalid when repeated sequence appears too many times, in which case we should use unordered_map<int, int> keyMap to replace char keyMap[1<<21]{0}here.

Majority Element

Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times. (bit-counting as a usual way, but here we actually also can adopt sorting and Moore Voting Algorithm)

Solution
int majorityElement(vector<int>& nums) {
    int len = sizeof(int)*8, size = nums.size();
    int count = 0, mask = 1, ret = 0;
    for(int i = 0; i < len; ++i) {
        count = 0;
        for(int j = 0; j < size; ++j)
            if(mask & nums[j]) count++;
        if(count > size/2) ret |= mask;
        mask <<= 1;
    }
    return ret;
}

Single Number III

Given an array of integers, every element appears three times except for one. Find that single one. (Still this type can be solved by bit-counting easily.) But we are going to solve it by digital logic design

Solution
//inspired by logical circuit design and boolean algebra;
//counter - unit of 3;
//current   incoming  next
//a b            c    a b
//0 0            0    0 0
//0 1            0    0 1
//1 0            0    1 0
//0 0            1    0 1
//0 1            1    1 0
//1 0            1    0 0
//a = a&~b&~c + ~a&b&c;
//b = ~a&b&~c + ~a&~b&c;
//return a|b since the single number can appear once or twice;
int singleNumber(vector<int>& nums) {
    int t = 0, a = 0, b = 0;
    for(int i = 0; i < nums.size(); ++i) {
        t = (a&~b&~nums[i]) | (~a&b&nums[i]);
        b = (~a&b&~nums[i]) | (~a&~b&nums[i]);
        a = t;
    }
    return a | b;
}
;
//I don't think this is the easiest solution to understand
//recommended
int singleNumber(int[] nums) {
  int ones = 0, twos = 0;
  for(int i : nums) {
    ones = (ones^i)&(~twos);
    twos = (twos^i)&(~ones);
  }
  return ones;
}

Maximum Product of Word Lengths

Given a string array words, find the maximum value of length(word[i]) * length(word[j]) where the two words do not share common letters. You may assume that each word will contain only lower case letters. If no such two words exist, return 0.

Example 1:
Given ["abcw", "baz", "foo", "bar", "xtfn", "abcdef"]
Return 16
The two words can be "abcw", "xtfn".

Example 2:
Given ["a", "ab", "abc", "d", "cd", "bcd", "abcd"]
Return 4
The two words can be "ab", "cd".

Example 3:
Given ["a", "aa", "aaa", "aaaa"]
Return 0
No such pair of words.

Solution

Since we are going to use the length of the word very frequently and we are to compare the letters of two words checking whether they have some letters in common:

  • using an array of int to pre-store the length of each word reducing the frequently measuring process;
  • since int has 4 bytes, a 32-bit type, and there are only 26 different letters, so we can just use one bit to indicate the existence of the letter in a word.
int maxProduct(vector<string>& words) {
    vector<int> mask(words.size());
    vector<int> lens(words.size());
    for(int i = 0; i < words.size(); ++i) lens[i] = words[i].length();
    int result = 0;
    for (int i=0; i<words.size(); ++i) {
        for (char c : words[i])
            mask[i] |= 1 << (c - 'a');
        for (int j=0; j<i; ++j)
            if (!(mask[i] & mask[j]))
                result = max(result, lens[i]*lens[j]);
    }
    return result;
}

Attention

  • result after shifting left(or right) too much is undefined
  • right shifting operations on negative values are undefined
  • right operand in shifting should be non-negative, otherwise the result is undefined
  • The & and | operators have lower precedence than comparison operators

Sets

All the subsets
A big advantage of bit manipulation is that it is trivial to iterate over all the subsets of an N-element set: every N-bit value represents some subset. Even better, if A is a subset of B then the number representing A is less than that representing B, which is convenient for some dynamic programming solutions.

It is also possible to iterate over all the subsets of a particular subset (represented by a bit pattern), provided that you don’t mind visiting them in reverse order (if this is problematic, put them in a list as they’re generated, then walk the list backwards). The trick is similar to that for finding the lowest bit in a number. If we subtract 1 from a subset, then the lowest set element is cleared, and every lower element is set. However, we only want to set those lower elements that are in the superset. So the iteration step is just i = (i - 1) & superset.

vector<vector<int>> subsets(vector<int>& nums) {
    vector<vector<int>> vv;
    int size = nums.size(); 
    if(size == 0) return vv;
    int num = 1 << size;
    vv.resize(num);
    for(int i = 0; i < num; ++i) {
        for(int j = 0; j < size; ++j)
            if((1<<j) & i) vv[i].push_back(nums[j]);   
    }
    return vv;
}

Actually there are two more methods to handle this using recursion and iteration respectively.

Bitset

A bitset stores bits (elements with only two possible values: 0 or 1, true or false, ...).
The class emulates an array of bool elements, but optimized for space allocation: generally, each element occupies only one bit (which, on most systems, is eight times less than the smallest elemental type: char).

// bitset::count
#include <iostream>       // std::cout
#include <string>         // std::string
#include <bitset>         // std::bitset

int main () {
  std::bitset<8> foo (std::string("10110011"));
  std::cout << foo << " has ";
  std::cout << foo.count() << " ones and ";
  std::cout << (foo.size()-foo.count()) << " zeros.\n";
  return 0;
}

Always welcom new ideas and practical tricks, just leave them in the comments!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容