webrtc 源码有个RTPFragmentationHeader 类。在自己注入264 数据的时候,需要解析出一个这样的头,这个我的理解,就是用来把一帧264数据按照nalu 结构切分一下,方便后面的rtp封装
我们来看一个解析一帧数据的HEAD
这里只分析264的
RTPFragmentationHeader VideoEncoderWrapper::ParseFragmentationHeader(
rtc::ArrayView<const uint8_t> buffer) {
RTPFragmentationHeader header;
if (codec_settings_.codecType == kVideoCodecH264) {
h264_bitstream_parser_.ParseBitstream(buffer.data(), buffer.size());
// For H.264 search for start codes.
const std::vector<H264::NaluIndex> nalu_idxs =
H264::FindNaluIndices(buffer.data(), buffer.size());
if (nalu_idxs.empty()) {
RTC_LOG(LS_ERROR) << "Start code is not found!";
RTC_LOG(LS_ERROR) << "Data:" << buffer[0] << " " << buffer[1] << " "
<< buffer[2] << " " << buffer[3] << " " << buffer[4]
<< " " << buffer[5];
}
header.VerifyAndAllocateFragmentationHeader(nalu_idxs.size());
for (size_t i = 0; i < nalu_idxs.size(); i++) {
header.fragmentationOffset[i] = nalu_idxs[i].payload_start_offset;
header.fragmentationLength[i] = nalu_idxs[i].payload_size;
}
} else {
// Generate a header describing a single fragment.
header.VerifyAndAllocateFragmentationHeader(1);
header.fragmentationOffset[0] = 0;
header.fragmentationLength[0] = buffer.size();
}
return header;
}
- 首先是把帧字节数据拆分成多个nalu 信息
const std::vector<H264::NaluIndex> nalu_idxs =
H264::FindNaluIndices(buffer.data(), buffer.size());
- VerifyAndAllocateFragmentationHeader 是分配head 里面的空间
- 后面就是把nalu_idxs 信息解析到header里面,这样header 里面就有了nalu的位置信息了,后面可以用于rtp封装
- 对于一个nalu 就是一帧的,其实可简化,相当于header 长度1,fragmentationOffset 为 3或者4,fragmentationLength 就是整个长度减去3或者4
- 详细理解一下FindNaluIndices方法,以后可能用得着
这个NaluIndex 的结构如下
struct NaluIndex {
// Start index of NALU, including start sequence.
size_t start_offset;
// Start index of NALU payload, typically type header.
size_t payload_start_offset;
// Length of NALU payload, in bytes, counting from payload_start_offset.
size_t payload_size;
};
start_offset: 一个nalu 的开始位置,包括nalu头 这个位置是相对于整个帧数据长度的
payload_start_offset: 一个nalu 的开始位置,不包括nalu头, 这个位置是相对于整个帧数据长度的
payload_size: nalu 的负载长度,不包括nalu头
再来分析一下 FindNaluIndices 的实现:
std::vector<NaluIndex> FindNaluIndices(const uint8_t* buffer,
size_t buffer_size) {
std::vector<NaluIndex> sequences;
if (buffer_size < kNaluShortStartSequenceSize)
return sequences;
const size_t end = buffer_size - kNaluShortStartSequenceSize;
for (size_t i = 0; i < end;) {
if (buffer[i + 2] > 1) {
i += 3;
} else if (buffer[i + 2] == 1 && buffer[i + 1] == 0 && buffer[i] == 0) {
// We found a start sequence, now check if it was a 3 of 4 byte one.
NaluIndex index = {i, i + 3, 0};
if (index.start_offset > 0 && buffer[index.start_offset - 1] == 0)
--index.start_offset;
// Update length of previous entry.
auto it = sequences.rbegin();
if (it != sequences.rend())
it->payload_size = index.start_offset - it->payload_start_offset;
sequences.push_back(index);
i += 3;
} else {
++i;
}
}
// Update length of last entry, if any.
auto it = sequences.rbegin();
if (it != sequences.rend())
it->payload_size = buffer_size - it->payload_start_offset;
return sequences;
}
这里面要理解的是,找到一个nalu得出它的start_offset,payload_start_offset。 但是他的payload_size是在下一次nalu 的时候,用下一个nalu的start_offset 减去当前的payload_start_offset 刚好就是负载的长度。