[机器学习入门]李宏毅机器学习笔记-1(Learning Map;学习导图)

在此就不介绍机器学习的概念了,请自行google,在此直接看Learning Map。

Learning Map(学习导图)

PDF VIDEO

先来看一张李大大的总图↓

先来看一张李大大的总图

鉴于看起来不是很直观,我“照虎画猫”做了一个思维导图如下:

理论上Supervised Learning分支下的内容都可以放在其他Learning Map大类下。


1. Supervised Learning

所谓监督学习,就是我们告诉机器说,当这个function看到某种input则输出a,看到另一种input输出b,看到……

Supervised Learning-> Regression

Regresion: The output of the target founction f is ‘scalar’. 如果我们在机器学习中要找的function输出是数值,

举个例子:
预测PM2.5进行天气预报。


这里写图片描述

核心思想就是:连续函数下进行预测

Supervised Learning-> Classification

分类问题有两种可能,Binary Classification 输出是或否,Multi-class Classification输出多个类型。

这里写图片描述

举个例子:

Binary Classification: Spam filtering(垃圾邮件过滤),判断是垃圾邮件,不是垃圾邮件。

Multi-classification: Document Classification(文件分类),将文件分为政治、经济、体育等多个大类。


Classification-> Linear Model 与 Non-Linear Model

Linear Model : 能做的事有限,一些简单的模型可以用它来做,但遇到复杂问题就力不从心了。

Non-linear Model : For example,现在的深度学习就是一个Non-linear Model,能完成一些很复杂的工作,比如图像分类等。

  • Classification-Image Recognition:输入一个图片,通过一个很复杂的卷积神经网络(CNN)的Function判断是猫是狗还是猴子,每个可能的物种是class。

    这里写图片描述
  • Classification-Playing Go:输入棋盘上的局势,判断下一个落子的位置,每一个可能的落子位置就是一个class。

这里写图片描述

Structuerd Learning

在实际运用中,常常会遇到Beyond Classification的情况,比如语音识别,人脸识别,语言翻译等,是结构化输出。此类问题常配合Reinforcement Learning 解决。

这里写图片描述

2. Semi-supervised Learning

example:要建立一个辨识猫与狗的系统,手上有一部分Labelled data(已经标记好的猫狗图片),和一部分Unlabeled data(未做过标记的猫狗图片),那么Semi-supervised Learning做的就是利用Unlabeled data优化function,也常用于数据不足时进行学习。


3. Transfer Learning

example:还是建立辨识猫与狗的系统,手上有一部分Labelled data(已经标记好的猫狗图片),和另一部分与猫狗没有关系的图片(比如狮子老虎,标未标记都可),那么Transfer Learning就是利用这些data优化function。

这里写图片描述

4. Unsupervised Learning

example1: 要让机器学会阅读,希望机器自己在网络上爬去很多文章,自己理解其中的意思,进而取得人类的一些理解,掌握阅读的技巧,这就是非监督学习要做的。

我们知道,做machine Learning就是要找一个function。比如在学会阅读这个系统里,我们给系统input一个“apple”词汇,然后让机器看懂。在Unsupervised Learning 中没有人告诉机器每个词汇表示什么意思,只有大量text喂给机器。

这里写图片描述

example2:要让机器学会自主绘画,我们只给机器呈现显示世界中的景象并不做标识,机器要从中提炼绘画风格与内容,学会通过作画表达自己。

这里写图片描述

4. Reinforcement Learning

在实际运用中,以上方法并不能解决全部问题,常常会遇到Beyond Classification的情况,比如语音识别,人脸识别,语言翻译等,那么就要通过增强学习来解决问题。

增强学习的一个非常知名的应用就是 google 阿法狗。


Reinforcement Learning VS Supervised

增强学习与监督学习有什么区别呢?
example1:用一个语音识别的例子来解释:

Supervised 就像给了机器一个点读机,他听到一句话时可以看到其含义,每一句话都有标签,就像有一个手把手教他的老师

而Reinforcement Learning 就像跟女朋友对话,反复讲来回讲很多句话,直到女朋友觉得你无言以对愤然离去,机器唯一可以知道的就是他做的好还是不好,除此之外没有任何information。而这更像人类现实生活中的学习过程,必须自己像哪里做得好做得不够好,怎么修正。

这里写图片描述

另一个例子,下围棋。

example2:

supervised: 给机器一堆棋谱,告诉机器,情况a则落子在“5-5”处,情况b则落子在......

Reinforcement Learning: 让机器自己下棋,下过几百手之后,机器只知道自己赢了还是输了,下的好还是不好,机器必须自己想办法做提高。

这里写图片描述

Alpha Go is supervised learning + reinforcement learning.


学习导图总结

有一个非常重要的信息是每一个框的颜色。

这里写图片描述

  • 蓝色部分代表scenario,意思是你现在有什么类型的 training data。
machine learning scenario
Supervised Learning 有标签data
Semi-supervised Learning 部分有标签data
Unsupervised Learning 无标签data
Transfer Learning 一堆不相干data
Reinforcement Learning 只有来自外界的评价

  • 红色部分代表task,意思是现在function的output是什么,只体现在supervised中,但其实可以插在以上五种Learning的每一种内。
    | machine learning | task(output) |
    | ------------- |-------------|
    | Regression | scalar |
    | Classification | class1、class2...之一 |
    | Structured Learning | 有结构的内容 |

  • 绿色部分代表Method方法模型,比如在Classification中有Linear模型 or Non-linear模型,我们可以将绿色部分插入任何红色部分中。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容