机器学习day19概率图模型

概率图模型

概率图模型(Probabilistic Graphic Model),能够很好地挖掘潜在的内容。

概率图中地节点分为隐含节点和观测节点,边分为有向边和无向边。从概率论的角度,节点对应于随机变量,边对应于随机变量的依赖或相关关系,其中有向边表示单向的依赖,无向边表示互相依赖。

概率图模型分为贝叶斯网络(Bayesian Network)和马尔可夫网络(Markov Network)两大类。贝叶斯用有向图结构表示,马尔可夫网络用无向图的网络结构表示。

概率图模型包含朴素贝叶斯模型、最大熵模型、隐马尔可夫模型、条件随机场、主题模型等等。

贝叶斯联合概率分布

左边为贝叶斯网络,右边为马尔可夫网络

贝叶斯网路和马尔可夫网络

由图可见,在给定A的条件下,B和C是条件独立的,基于条件条件概率的定义可得
P(C|A,B)=\frac{P(B,C|A)}{P(B|A)}=\frac{P(B|A)P(C|A)}{P(B|A)}\\=P(C|A)

同理,在给定B和C的条件下,A和D是条件独立的,可得
P(D|A,B,C)=\frac{P(A,D|B,C)}{P(A|B,C)}=\frac{P(A|B,C)P(D|B,C)}{P(A|B,C)}\\=P(D|B,C)

上面两个式子可联合概率
P(A,B,C,D)=P(A)P(B|A)P(C|A,B)P(D|A,B,C)\\=P(A)P(B|A)P(C|A)P(D|B,C)

马尔可夫联合概率分布

在马尔可夫网络中,联合概率分布的定义如下:
P(x)=\frac{1}{Z}\prod_{Q\in C}\varphi_Q(x_Q)
其中C为图中最大团所构成的集合,Z=\sum_x\prod_{Q\in C}\varphi_Q(x_Q)为归一化因子,用来保证P(x)是被正确定义的概率,\varphi_Q是与团Q对应的势函数,势函数非负,并且应该在概率较大的变量上取得较大的值,例如指数函数
\varphi_Q(x_Q)=e^{-H_Q(x_Q)}
其中
H_Q(x_Q)=\sum_{u,v\in Q,u\neq v}\alpha_{u,v}x_ux_v+\sum_{v\in Q}\beta_vx_v
对于图中所有节点x=\{x_1,x_2,..,x_n\}所构成的一个子集,如果这个子集中,任意两点之间都存在边相连,则这个自己的所有节点构成一个团。如果在这个子集中加入其他任意节点,都不能构成团,我们称这样的子集构成一个最大团。左边为贝叶斯网络,右边为马尔可夫网络

贝叶斯网路和马尔可夫网络

显然这里只有(A,B)、(A,C)、(B,D)、(C,D)构成团,且是最大团。联合概率密度可以表示为
P(A,B,C,D)=\frac{1}{Z}\varphi_1(A,B)\varphi_2(A,C)\varphi_3(B,D)\varphi_4(C,D)

如果使用上面的指数函数作为势函数,则有
H(A,B,C,D)=\alpha_1AB+\alpha_2AC+\alpha_3BD+\alpha_4CD+\beta_1A+\beta_2B+\beta_3C+\beta_4D


P(A,B,C,D)=\frac{1}{Z}e^{-H(A,B,C,D)}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,651评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,468评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,931评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,218评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,234评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,198评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,084评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,926评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,341评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,563评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,731评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,430评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,036评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,676评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,829评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,743评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,629评论 2 354