优化算法matlab实现(三十三)黏菌算法matlab实现

注意:此代码实现的是求目标函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。
注意:此代码实现的是求目标函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。
注意:此代码实现的是求目标函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。

1.代码实现

不了解黏菌算法可以先看看优化算法笔记(三十三)黏菌算法
实现代码前需要先完成优化算法matlab实现(二)框架编写中的框架的编写。

文件 名描述
..\optimization algorithm\frame\Unit.m 个体
..\optimization algorithm\frame\Algorithm_Impl.m 算法主体

以及优化算法matlab实现(四)测试粒子群算法中的测试函数、函数图像的编写。

文件名 描述
..\optimization algorithm\frame\Get_Functions_details.m 测试函数,求值用
..\optimization algorithm\frame\func_plot.m 函数图像,画图用

黏菌算法的个体有一个独有属性:权重。
黏菌算法个体
文件名:.. \optimization algorithm\algorithm_slime_mould\SMA_Unit.m

% 黏菌算法个体
classdef SMA_Unit < Unit
    
    properties
        % 权重
        weight;
    end
    
    methods
        function self = SMA_Unit()
        end
    end
 
end

黏菌算法算法主体
文件名:..\optimization algorithm\algorithm_slime_mould\SMA_Base.m

% 黏菌算法
classdef SMA_Base  < Algorithm_Impl
    
    properties
        % 算法名称
        name = 'SMA';
        % 变异系数
        Z = 0.03;
    end
    
    % 外部可调用的方法
    methods
        function self = SMA_Base(dim,size,iter_max,range_min_list,range_max_list)
            % 调用父类构造函数
            self@Algorithm_Impl(dim,size,iter_max,range_min_list,range_max_list);
            self.name ='SMA';
        end
    end
    
    % 继承重写父类的方法
    methods (Access = protected)
        % 初始化种群
        function init(self)
            init@Algorithm_Impl(self)
            %初始化种群
            for i = 1:self.size
                unit = SMA_Unit();
                % 随机初始化位置:rand(0,1).*(max-min)+min
                unit.position = unifrnd(self.range_min_list,self.range_max_list);
                % 计算适应度值
                unit.value = self.cal_fitfunction(unit.position);
                % 将个体加入群体数组
                self.unit_list = [self.unit_list,unit];
            end
        end
        
        % 每一代的更新
        function update(self,iter)
            update@Algorithm_Impl(self,iter)
            
            % 更新权重
            self.update_weight();
            
            % 更新位置
            self.update_position(iter);
            
        end
        
        % 更新权重
        function update_weight(self)
            % 从大到小排序,数值越大越优
            [value,index] = sort([self.unit_list.value],'descend');
            % 最优值与最差值的绝对值
            s = abs(value(1)-value(end)) + realmin('double');
            
            for i = 1:self.size
                if i < self.size/2
                    new_weight = 1 + unifrnd(0,1,1,self.dim).*log10(1+(value(1)-self.unit_list(index(i)).value)/s);
                else
                    new_weight = 1 - unifrnd(0,1,1,self.dim).*log10(1+(value(1)-self.unit_list(index(i)).value)/s);
                end
                self.unit_list(index(i)).weight = new_weight;
            end
            
        end
        
        % 更新位置
        function update_position(self,iter)
            % 从大到小排序,数值越大越优
            [value,index] = sort([self.unit_list.value],'descend');
            a = atanh(1-iter/self.iter_max);
            b = 1-iter/self.iter_max;
            for i = 1:self.size
                if rand < self.Z
                    % 变异操作,解空间内随机初始化
                    self.unit_list(index(i)).position = unifrnd(self.range_min_list,self.range_max_list);
                    self.unit_list(index(i)).value = self.cal_fitfunction(self.unit_list(index(i)).position);
                else
                    p = tanh(abs(self.value_best - self.unit_list(index(i)).value));
                    if rand < p
                        % 随机选择两个个体
                        A = randperm(self.size,1);
                        B = randperm(self.size,1);
                        new_pos = self.position_best+unifrnd(-a,a,1,self.dim).*(self.unit_list(A).weight.*self.unit_list(A).position - self.unit_list(B).position);
                    else
                        new_pos = unifrnd(-b,b,1,self.dim).*self.unit_list(index(i)).position;
                    end
                    new_pos = self.get_out_bound_value(new_pos);
                    new_value = self.cal_fitfunction(new_pos);
                    self.unit_list(index(i)).value = new_value;
                    self.unit_list(index(i)).position = new_pos;
                end
            end
        end
       
        
        % 获取当前最优个体的id
        function best_id=get_best_id(self)
            % 求最大值则降序排列
            [value,index] = sort([self.unit_list.value],'descend');
            best_id = index(1);
        end

    end
end

文件名:..\optimization algorithm\algorithm_slime_mould\SMA_Impl.m
算法实现,继承于Base,图方便也可不写,直接用SMA_Base,这里为了命名一致。

% 黏菌算法实现
classdef SMA_Impl < SMA_Base
   
    % 外部可调用的方法
    methods
        function self = SMA_Impl(dim,size,iter_max,range_min_list,range_max_list)
            % 调用父类构造函数设置参数
             self@SMA_Base(dim,size,iter_max,range_min_list,range_max_list);
        end
    end 
end 

2.测试

测试F1
文件名:..\optimization algorithm\algorithm_slime_mould\Test.m

%% 清理之前的数据
% 清除所有数据
clear all;
close all;
% 清除窗口输出
clc;

%% 添加目录
% 将上级目录中的frame文件夹加入路径
addpath('../frame')


%% 选择测试函数
Function_name='F1';
%[最小值,最大值,维度,测试函数]
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

%% 算法实例
% 种群数量
size = 50;
% 最大迭代次数
iter_max = 1000;
% 取值范围上界
range_max_list = ones(1,dim).*ub;
% 取值范围下界
range_min_list = ones(1,dim).*lb;

% 实例化黏菌算法类
base = SMA_Impl(dim,size,iter_max,range_min_list,range_max_list);
base.is_cal_max = false;
% 确定适应度函数
base.fitfunction = fobj;
% 运行
base.run();
disp(base.cal_fit_num);

%% 绘制图像
figure('Position',[500 500 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
%Draw objective space
subplot(1,2,2);
% 绘制曲线,由于算法是求最大值,适应度函数为求最小值,故乘了-1,此时去掉-1
semilogy((base.value_best_history),'Color','r')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
% 将坐标轴调整为紧凑型
axis tight
% 添加网格
grid on
% 四边都显示刻度
box off
legend(base.name)
display(['The best solution obtained by ',base.name ,' is ', num2str(base.value_best)]);
display(['The best optimal value of the objective funciton found by ',base.name ,' is ', num2str(base.position_best)]);
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容