自动引用计数
Swift 使用自动引用计数(ARC)机制来跟踪和管理你的应用程序的内存。通常情况下,Swift 内存管理机制会一直起作用,你无须自己来考虑内存的管理。ARC 会在类的实例不再被使用时,自动释放其占用的内存。
然而在少数情况下,为了能帮助你管理内存,ARC 需要更多的,代码之间关系的信息。本章描述了这些情况,并且为你示范怎样才能使 ARC 来管理你的应用程序的所有内存。
注意
引用计数仅仅应用于类的实例。结构体和枚举类型是值类型,不是引用类型,也不是通过引用的方式存储和传递。
自动引用计数的工作机制
当你每次创建一个类的新的实例的时候,ARC 会分配一块内存来储存该实例信息。内存中会包含实例的类型信息,以及这个实例所有相关的存储型属性的值。
此外,当实例不再被使用时,ARC 释放实例所占用的内存,并让释放的内存能挪作他用。这确保了不再被使用的实例,不会一直占用内存空间。
然而,当 ARC 收回和释放了正在被使用中的实例,该实例的属性和方法将不能再被访问和调用。实际上,如果你试图访问这个实例,你的应用程序很可能会崩溃。
为了确保使用中的实例不会被销毁,ARC 会跟踪和计算每一个实例正在被多少属性,常量和变量所引用。哪怕实例的引用数为1,ARC都不会销毁这个实例。
为了使上述成为可能,无论你将实例赋值给属性、常量或变量,它们都会创建此实例的强引用。之所以称之为“强”引用,是因为它会将实例牢牢地保持住,只要强引用还在,实例是不允许被销毁的。
类实例之间的循环强引用
在上面的例子中,ARC 会跟踪你所新创建的Person
实例的引用数量,并且会在Person
实例不再被需要时销毁它。
然而,我们可能会写出一个类实例的强引用数永远不能变成0
的代码。如果两个类实例互相持有对方的强引用,因而每个实例都让对方一直存在,就是这种情况。这就是所谓的循环强引用。
你可以通过定义类之间的关系为弱引用或无主引用,以替代强引用,从而解决循环强引用的问题。
下面展示了一个不经意产生循环强引用的例子。例子定义了两个类:Person
和Apartment
,用来建模公寓和它其中的居民:
class Person {
let name: String
init(name: String) { self.name = name }
var apartment: Apartment?
deinit { print("\(name) is being deinitialized") }
}
class Apartment {
let unit: String
init(unit: String) { self.unit = unit }
var tenant: Person?
deinit { print("Apartment \(unit) is being deinitialized") }
}
每一个Person
实例有一个类型为String
,名字为name
的属性,并有一个可选的初始化为nil
的apartment
属性。apartment
属性是可选的,因为一个人并不总是拥有公寓。
类似的,每个Apartment
实例有一个叫unit
,类型为String
的属性,并有一个可选的初始化为nil
的tenant
属性。tenant
属性是可选的,因为一栋公寓并不总是有居民。
这两个类都定义了析构函数,用以在类实例被析构的时候输出信息。这让你能够知晓Person
和Apartment
的实例是否像预期的那样被销毁。
接下来的代码片段定义了两个可选类型的变量john
和unit4A
,并分别被设定为下面的Apartment
和Person
的实例。这两个变量都被初始化为nil
,这正是可选的优点:
var john: Person?
var unit4A: Apartment?
现在你可以创建特定的Person
和Apartment
实例并将赋值给john
和unit4A
变量:
john = Person(name: "John Appleseed")
unit4A = Apartment(unit: "4A")
在两个实例被创建和赋值后,下图表现了强引用的关系。变量john
现在有一个指向Person
实例的强引用,而变量unit4A
有一个指向Apartment
实例的强引用:
现在你能够将这两个实例关联在一起,这样人就能有公寓住了,而公寓也有了房客。
john?.apartment = unit4A
unit4A?.tenant = john
在将两个实例联系在一起之后,强引用的关系如图所示:
不幸的是,这两个实例关联后会产生一个循环强引用。Person
实例现在有了一个指向Apartment
实例的强引用,而Apartment
实例也有了一个指向Person
实例的强引用。因此,当你断开john
和unit4A
变量所持有的强引用时,引用计数并不会降为0
,实例也不会被 ARC 销毁:
john = nil
unit4A = nil
注意,当你把这两个变量设为nil
时,没有任何一个析构函数被调用。循环强引用会一直阻止Person
和Apartment
类实例的销毁,这就在你的应用程序中造成了内存泄漏。
在你将john
和unit4A
赋值为nil
后,强引用关系如下图:
Person
和Apartment
实例之间的强引用关系保留了下来并且不会被断开。
解决实例之间的循环强引用
Swift 提供了两种办法用来解决你在使用类的属性时所遇到的循环强引用问题:弱引用(weak reference)和无主引用(unowned reference)。
弱引用和无主引用允许循环引用中的一个实例引用另外一个实例而不保持强引用。这样实例能够互相引用而不产生循环强引用。
对于生命周期中会变为nil
的实例使用弱引用。相反地,对于初始化赋值后再也不会被赋值为nil
的实例,使用无主引用。
弱引用
弱引用不会对其引用的实例保持强引用,因而不会阻止 ARC 销毁被引用的实例。这个特性阻止了引用变为循环强引用。声明属性或者变量时,在前面加上weak
关键字表明这是一个弱引用。
在实例的生命周期中,如果某些时候引用没有值,那么弱引用可以避免循环强引用。如果引用总是有值,则可以使用无主引用。在上面Apartment
的例子中,一个公寓的生命周期中,有时是没有“居民”的,因此适合使用弱引用来解决循环强引用。
注意
弱引用必须被声明为变量,表明其值能在运行时被修改。弱引用不能被声明为常量。
因为弱引用可以没有值,你必须将每一个弱引用声明为可选类型。在 Swift 中,推荐使用可选类型描述可能没有值的类型。
因为弱引用不会保持所引用的实例,即使引用存在,实例也有可能被销毁。因此,ARC 会在引用的实例被销毁后自动将其赋值为nil
。你可以像其他可选值一样,检查弱引用的值是否存在,你将永远不会访问已销毁的实例的引用。
下面的例子跟上面Person
和Apartment
的例子一致,但是有一个重要的区别。这一次,Apartment
的tenant
属性被声明为弱引用:
class Person {
let name: String
init(name: String) { self.name = name }
var apartment: Apartment?
deinit { print("\(name) is being deinitialized") }
}
class Apartment {
let unit: String
init(unit: String) { self.unit = unit }
weak var tenant: Person?
deinit { print("Apartment \(unit) is being deinitialized") }
}
然后跟之前一样,建立两个变量(john
和unit4A
)之间的强引用,并关联两个实例:
var john: Person?
var unit4A: Apartment?
john = Person(name: "John Appleseed")
unit4A = Apartment(unit: "4A")
john!.apartment = unit4A
unit4A!.tenant = john
现在,两个关联在一起的实例的引用关系如下图所示:
Person
实例依然保持对Apartment
实例的强引用,但是Apartment
实例只持有对Person
实例的弱引用。这意味着当你断开john
变量所保持的强引用时,再也没有指向Person
实例的强引用了:
由于再也没有指向Person
实例的强引用,该实例会被销毁:
john = nil
// 打印 “John Appleseed is being deinitialized”
唯一剩下的指向Apartment
实例的强引用来自于变量unit4A
。如果你断开这个强引用,再也没有指向Apartment
实例的强引用了:
由于再也没有指向Apartment
实例的强引用,该实例也会被销毁:
unit4A = nil
// 打印 “Apartment 4A is being deinitialized”
上面的两段代码展示了变量john
和unit4A
在被赋值为nil
后,Person
实例和Apartment
实例的析构函数都打印出“销毁”的信息。这证明了引用循环被打破了。
注意
在使用垃圾收集的系统里,弱指针有时用来实现简单的缓冲机制,因为没有强引用的对象只会在内存压力触发垃圾收集时才被销毁。但是在 ARC 中,一旦值的最后一个强引用被移除,就会被立即销毁,这导致弱引用并不适合上面的用途。
无主引用
和弱引用类似,无主引用不会牢牢保持住引用的实例。和弱引用不同的是,无主引用是永远有值的。因此,无主引用总是被定义为非可选类型(non-optional type)。你可以在声明属性或者变量时,在前面加上关键字unowned
表示这是一个无主引用。
由于无主引用是非可选类型,你不需要在使用它的时候将它展开。无主引用总是可以被直接访问。不过 ARC 无法在实例被销毁后将无主引用设为nil
,因为非可选类型的变量不允许被赋值为nil
。
注意
如果你试图在实例被销毁后,访问该实例的无主引用,会触发运行时错误。使用无主引用,你必须确保引用始终指向一个未销毁的实例。
还需要注意的是如果你试图访问实例已经被销毁的无主引用,Swift 确保程序会直接崩溃,而不会发生无法预期的行为。所以你应当避免这样的事情发生。
下面的例子定义了两个类,Customer
和CreditCard
,模拟了银行客户和客户的信用卡。这两个类中,每一个都将另外一个类的实例作为自身的属性。这种关系可能会造成循环强引用。
Customer
和CreditCard
之间的关系与前面弱引用例子中Apartment
和Person
的关系略微不同。在这个数据模型中,一个客户可能有或者没有信用卡,但是一张信用卡总是关联着一个客户。为了表示这种关系,Customer
类有一个可选类型的card
属性,但是CreditCard
类有一个非可选类型的customer
属性。
此外,只能通过将一个number
值和customer
实例传递给CreditCard
构造函数的方式来创建CreditCard
实例。这样可以确保当创建CreditCard
实例时总是有一个customer
实例与之关联。
由于信用卡总是关联着一个客户,因此将customer
属性定义为无主引用,用以避免循环强引用:
class Customer {
let name: String
var card: CreditCard?
init(name: String) {
self.name = name
}
deinit { print("\(name) is being deinitialized") }
}
class CreditCard {
let number: UInt64
unowned let customer: Customer
init(number: UInt64, customer: Customer) {
self.number = number
self.customer = customer
}
deinit { print("Card #\(number) is being deinitialized") }
}
注意
CreditCard
类的number
属性被定义为UInt64
类型而不是Int
类型,以确保number
属性的存储量在 32 位和 64 位系统上都能足够容纳 16 位的卡号。
下面的代码片段定义了一个叫john
的可选类型Customer
变量,用来保存某个特定客户的引用。由于是可选类型,所以变量被初始化为nil
:
var john: Customer?
现在你可以创建Customer
类的实例,用它初始化CreditCard
实例,并将新创建的CreditCard
实例赋值为客户的card
属性:
john = Customer(name: "John Appleseed")
john!.card = CreditCard(number: 1234_5678_9012_3456, customer: john!)
在你关联两个实例后,它们的引用关系如下图所示:
Customer
实例持有对CreditCard
实例的强引用,而CreditCard
实例持有对Customer
实例的无主引用。
由于customer
的无主引用,当你断开john
变量持有的强引用时,再也没有指向Customer
实例的强引用了:
由于再也没有指向Customer
实例的强引用,该实例被销毁了。其后,再也没有指向CreditCard
实例的强引用,该实例也随之被销毁了:
john = nil
// 打印 “John Appleseed is being deinitialized”
// 打印 ”Card #1234567890123456 is being deinitialized”
最后的代码展示了在john
变量被设为nil
后Customer
实例和CreditCard
实例的构造函数都打印出了“销毁”的信息。
闭包引起的循环强引用
前面我们看到了循环强引用是在两个类实例属性互相保持对方的强引用时产生的,还知道了如何用弱引用和无主引用来打破这些循环强引用。
循环强引用还会发生在当你将一个闭包赋值给类实例的某个属性,并且这个闭包体中又使用了这个类实例时。这个闭包体中可能访问了实例的某个属性,例如self.someProperty
,或者闭包中调用了实例的某个方法,例如self.someMethod()
。这两种情况都导致了闭包“捕获”self
,从而产生了循环强引用。
循环强引用的产生,是因为闭包和类相似,都是引用类型。当你把一个闭包赋值给某个属性时,你是将这个闭包的引用赋值给了属性。实质上,这跟之前的问题是一样的——两个强引用让彼此一直有效。但是,和两个类实例不同,这次一个是类实例,另一个是闭包。
Swift 提供了一种优雅的方法来解决这个问题,称之为闭包捕获列表
(closure capture list)。同样的,在学习如何用闭包捕获列表打破循环强引用之前,先来了解一下这里的循环强引用是如何产生的,这对我们很有帮助。
下面的例子为你展示了当一个闭包引用了self
后是如何产生一个循环强引用的。例子中定义了一个叫HTMLElement
的类,用一种简单的模型表示 HTML 文档中的一个单独的元素:
class HTMLElement {
let name: String
let text: String?
lazy var asHTML: () -> String = {
if let text = self.text {
return "<\(self.name)>\(text)</\(self.name)>"
} else {
return "<\(self.name) />"
}
}
init(name: String, text: String? = nil) {
self.name = name
self.text = text
}
deinit {
print("\(name) is being deinitialized")
}
}
HTMLElement
类定义了一个name
属性来表示这个元素的名称,例如代表段落的“p”
,或者代表换行的“br”
。HTMLElement
还定义了一个可选属性text
,用来设置 HTML 元素呈现的文本。
除了上面的两个属性,HTMLElement
还定义了一个lazy
属性asHTML
。这个属性引用了一个将name
和text
组合成 HTML 字符串片段的闭包。该属性是Void -> String
类型,或者可以理解为“一个没有参数,返回String
的函数”。
默认情况下,闭包赋值给了asHTML
属性,这个闭包返回一个代表 HTML 标签的字符串。如果text
值存在,该标签就包含可选值text
;如果text
不存在,该标签就不包含文本。对于段落元素,根据text
是“some text”
还是nil
,闭包会返回"some text"
或者""
。
可以像实例方法那样去命名、使用asHTML
属性。然而,由于asHTML
是闭包而不是实例方法,如果你想改变特定 HTML 元素的处理方式的话,可以用自定义的闭包来取代默认值。
例如,可以将一个闭包赋值给asHTML
属性,这个闭包能在text
属性是nil
时使用默认文本,这是为了避免返回一个空的 HTML 标签:
let heading = HTMLElement(name: "h1")
let defaultText = "some default text"
heading.asHTML = {
return "<\(heading.name)>\(heading.text ?? defaultText)</\(heading.name)>"
}
print(heading.asHTML())
// 打印 “<h1>some default text</h1>”
注意
asHTML
声明为lazy
属性,因为只有当元素确实需要被处理为 HTML 输出的字符串时,才需要使用asHTML
。也就是说,在默认的闭包中可以使用self
,因为只有当初始化完成以及self
确实存在后,才能访问lazy
属性。
HTMLElement
类只提供了一个构造函数,通过name
和text
(如果有的话)参数来初始化一个新元素。该类也定义了一个析构函数,当HTMLElement
实例被销毁时,打印一条消息。
下面的代码展示了如何用HTMLElement
类创建实例并打印消息:
var paragraph: HTMLElement? = HTMLElement(name: "p", text: "hello, world")
print(paragraph!.asHTML())
// 打印 “<p>hello, world</p>”
注意
上面的paragraph
变量定义为可选类型的HTMLElement
,因此我们可以赋值nil
给它来演示循环强引用。
不幸的是,上面写的HTMLElement
类产生了类实例和作为asHTML
默认值的闭包之间的循环强引用。循环强引用如下图所示:
实例的asHTML
属性持有闭包的强引用。但是,闭包在其闭包体内使用了self
(引用了self.name
和self.text
),因此闭包捕获了self
,这意味着闭包又反过来持有了HTMLElement
实例的强引用。这样两个对象就产生了循环强引用。
注意
虽然闭包多次使用了self
,它只捕获HTMLElement
实例的一个强引用。
如果设置paragraph
变量为nil
,打破它持有的HTMLElement
实例的强引用,HTMLElement
实例和它的闭包都不会被销毁,也是因为循环强引用:
paragraph = nil
注意,HTMLElement
的析构函数中的消息并没有被打印,证明了HTMLElement
实例并没有被销毁。
解决闭包引起的循环强引用
在定义闭包时同时定义捕获列表作为闭包的一部分,通过这种方式可以解决闭包和类实例之间的循环强引用。捕获列表定义了闭包体内捕获一个或者多个引用类型的规则。跟解决两个类实例间的循环强引用一样,声明每个捕获的引用为弱引用或无主引用,而不是强引用。应当根据代码关系来决定使用弱引用还是无主引用。
注意
Swift 有如下要求:只要在闭包内使用self
的成员,就要用self.someProperty
或者self.someMethod()
(而不只是someProperty
或someMethod()
)。这提醒你可能会一不小心就捕获了self
。
定义捕获列表
捕获列表中的每一项都由一对元素组成,一个元素是weak
或unowned
关键字,另一个元素是类实例的引用(例如self
)或初始化过的变量(如delegate = self.delegate!
)。这些项在方括号中用逗号分开。
如果闭包有参数列表和返回类型,把捕获列表放在它们前面:
lazy var someClosure: (Int, String) -> String = {
[unowned self, weak delegate = self.delegate!] (index: Int, stringToProcess: String) -> String in
// 这里是闭包的函数体
}
如果闭包没有指明参数列表或者返回类型,即它们会通过上下文推断,那么可以把捕获列表和关键字in
放在闭包最开始的地方:
lazy var someClosure: Void -> String = {
[unowned self, weak delegate = self.delegate!] in
// 这里是闭包的函数体
}
弱引用和无主引用
在闭包和捕获的实例总是互相引用并且总是同时销毁时,将闭包内的捕获定义为无主引用
。
相反的,在被捕获的引用可能会变为nil
时,将闭包内的捕获定义为弱引用
。弱引用总是可选类型,并且当引用的实例被销毁后,弱引用的值会自动置为nil
。这使我们可以在闭包体内检查它们是否存在。
注意
如果被捕获的引用绝对不会变为nil
,应该用无主引用,而不是弱引用。
前面的HTMLElement
例子中,无主引用是正确的解决循环强引用的方法。这样编写HTMLElement
类来避免循环强引用:
class HTMLElement {
let name: String
let text: String?
lazy var asHTML: () -> String = {
[unowned self] in
if let text = self.text {
return "<\(self.name)>\(text)</\(self.name)>"
} else {
return "<\(self.name) />"
}
}
init(name: String, text: String? = nil) {
self.name = name
self.text = text
}
deinit {
print("\(name) is being deinitialized")
}
}
上面的HTMLElement
实现和之前的实现一致,除了在asHTML
闭包中多了一个捕获列表。这里,捕获列表是[unowned self]
,表示“将self
捕获为无主引用而不是强引用”。
和之前一样,我们可以创建并打印HTMLElement
实例:
var paragraph: HTMLElement? = HTMLElement(name: "p", text: "hello, world")
print(paragraph!.asHTML())
// 打印 “<p>hello, world</p>”
使用捕获列表后引用关系如下图所示:
这一次,闭包以无主引用的形式捕获self
,并不会持有HTMLElement
实例的强引用。如果将paragraph
赋值为nil
,HTMLElement
实例将会被销毁,并能看到它的析构函数打印出的消息:
paragraph = nil
// 打印 “p is being deinitialized”
可选链式调用(Optional Chaining)
可选链式调用(Optional Chaining)是一种可以在当前值可能为nil
的可选值上请求和调用属性、方法及下标的方法。如果可选值有值,那么调用就会成功;如果可选值是nil
,那么调用将返回nil
。多个调用可以连接在一起形成一个调用链,如果其中任何一个节点为nil
,整个调用链都会失败,即返回nil
。
通过在想调用的属性、方法、或下标的可选值(optional value)后面放一个问号(?
),可以定义一个可选链。这一点很像在可选值后面放一个叹号(!
)来强制展开它的值。它们的主要区别在于当可选值为空时可选链式调用只会调用失败,然而强制展开将会触发运行时错误。
为了反映可选链式调用可以在空值(nil
)上调用的事实,不论这个调用的属性、方法及下标返回的值是不是可选值,它的返回结果都是一个可选值。你可以利用这个返回值来判断你的可选链式调用是否调用成功,如果调用有返回值则说明调用成功,返回nil
则说明调用失败。
特别地,可选链式调用的返回结果与原本的返回结果具有相同的类型,但是被包装成了一个可选值。例如,使用可选链式调用访问属性,当可选链式调用成功时,如果属性原本的返回结果是Int
类型,则会变为Int?
类型。
class Person {
var residence: Residence?
}
class Residence {
var numberOfRooms = 1
func test1() {
print("test1")
}
func test2() -> Int {
return 3
}
}
var a = Person()
// a.residence = Residence()
a.residence?.test1()
let b = a.residence?.test2()