R-clinical data

技能树TP53_BRCA exampleDEseq2

# Step2 Grouping by special clinical information --------------------------

if (!file.exists( '.TCGA-BRCA.GDC_phenotype.tsv.gz' )) {
  gzfile <- "./TCGA-BRCA.GDC_phenotype.tsv.gz"
  download.file("https://gdc.xenahubs.net/download/TCGA-BRCA/Xena_Matrices/TCGA-BRCA.GDC_phenotype.tsv.gz", 
                destfile = gzfile)
  phenoData <- read.table( gzfile,
                           header = T,
                           sep = '  ',
                           quote = '' )
  save( phenoData, file = './TCGA-BRCA.GDC_phenotype.Rdata' )
}else{
  load('./TCGA-BRCA.GDC_phenotype.Rdata')
}
pheno_num <- c()
invisible(
  lapply(1:ncol(phenoData), 
         function(col_num){
           ## Assume that the classification project is between 2 and 4   #??
           if (1 < dim(table(phenoData[,4])) & 
               dim(table(phenoData[,col_num])) < 5) {
             pheno_num <<- append(pheno_num, col_num, after = length(pheno_num))
           }
         }
  )
)
View(phenoData[, pheno_num])
names(phenoData[, pheno_num])


## Category 3: TP53     
#SNV( single nucleotide variants)
if (!file.exists( './TCGA-BRCA.mutect2_snv.tsv.gz' )) {
  gzfile <- "./TCGA-BRCA.mutect2_snv.tsv.gz"
  download.file("https://gdc.xenahubs.net/download/TCGA-BRCA/Xena_Matrices/TCGA-BRCA.mutect2_snv.tsv.gz", 
                destfile = gzfile)
  mutype_file <- read.table( gzfile,
                             header = T,
                             sep = '    ',
                             quote = '' )
  save( mutype_file, file = './TCGA-BRCA.mutect2_snv.Rdata' )
}else{
  load('./TCGA-BRCA.mutect2_snv.Rdata')
}

raw_data[1:5, 1:15]

## Pick columns that contains 'tp53'
TP53 <- mutype_file[mutype_file$gene == 'tp53' | mutype_file$gene == 'TP53',]
TP53_sample <- unique( sort( TP53$Sample_ID ) )
tumor_sample <- colnames(raw_data)[substr( colnames(raw_data),14,15) < 10] #find 癌group="01" 
TP53_sample <- intersect(tumor_sample, TP53_sample)
noTP53_sample <- setdiff(tumor_sample, TP53_sample)
save(TP53_sample, noTP53_sample, file = './sample_by_TP53.Rdata')

# Step3 Filt sample ------------------------------------------------

load('./TCGA-BRCA.htseq_counts.Rdata')

tp53_sample <- c(TP53_sample, noTP53_sample)
AssayData <- raw_data[, tp53_sample]
dim(AssayData)
group_list <- c(rep('TP53', length(TP53_sample)),
                rep('NO_TP53', length(noTP53_sample)))
save(AssayData, group_list, file = './tnbc_tumor_TP53_AssayData.Rdata')

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,639评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,277评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,221评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,474评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,570评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,816评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,957评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,718评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,176评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,511评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,646评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,322评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,934评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,755评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,987评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,358评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,514评论 2 348

推荐阅读更多精彩内容