这31个高颜值的数据图表,学会了不得了!

日常工作中,好多人都面对一堆数据,但却不知道如何更直观展示效果,或者不知道用什么图表展示更好!花了一些时间整理了工作中常用的数据图表,希望对大家有用,不再是单纯给领导、用户展示干瘪的数据~~~本文除了柱状图、条形图、折线图、饼图等常用图表之外,还有数据地图、瀑布图,散点图,旭日图,漏斗图等等。

1.柱状图(堆积柱状图、百分比堆积柱状图)

2.条形图(堆积条形图、百分比堆积条形图)

3.折线图

4.各种数据地图(一共有6种类型)

5.饼图(环图)

6.雷达图

7.漏斗图

8.词云

9.散点图(气泡图)

10.面积图(堆积面积图、百分比堆积面积图)

11.指标卡

12.计量图

13.瀑布图

14.桑基图

15.旭日图

16.双轴图(柱状+折线、柱状+柱状、折线+折线)

虽然看似就16种图表,其实一共有31种图表啦,可以认真数一数哈~那就一起了解下不同图表的使用场景、优劣势

1.柱状图

适用场景:适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况。适用于枚举的数据,比如地域之间的关系,数据没有必然的连续性。

优势:柱状图利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感。

劣势:柱状图的局限在于只适用中小规模的数据集。

延伸图表:堆积柱状图、百分比堆积柱状图

不仅可以直观的看出每个系列的值,还能够反映出系列的总和,尤其是当需要看某一单位的综合以及各系列值的比重时,最适合。

(堆积柱状图)

(百分比堆积柱状图)

2.条形图

适用场景:显示各个项目之间的比较情况,和柱状图类似的作用;

优势:每个条都清晰表示数据,直观;

延伸图表:堆积条形图、百分比堆积条形图

(堆积条形图)

(百分比堆积条形图)

3.折线图

适用场景: 折线图适合二维的大数据集,还适合多个二维数据集的比较。一般用来表示趋势的变化,横轴一般为日期字段。

优势:容易反应出数据变化的趋势。

4.各种数据地图(一共有6种类型)

适用场景:适用于有空间位置的数据集,一般分成行政地图(气泡图、面积图)和GIS地图。行政地图一般有省份、城市数据就够了(比如福建-泉州);而GIS地图则需要经纬度数据,更细化到具体区域,只要有数据,可做区域、全国甚至全球的地图。

优劣势:特殊状况下使用,涉及行政区域;

(1)行政地图(面积图)

(2)行政地图(气泡图)

(3)GIS地图:点状图

(4)GIS地图:热力图

(5)GIS地图:(北京某区域)散点图

Ps:区域地图,通过放大镜可以放大或缩小区域

(6)GIS地图:地图+柱状/饼图/条形

5.饼图(环图)

适用场景:显示各项的大小与各项总和的比例。适用简单的占比比例图,在不要求数据精细的情况适用。

优势:明确显示数据的比例情况,尤其合适渠道来源等场景。

劣势:肉眼对面积大小不敏感。

饼图、环图你喜欢那个呢,可以直接设置~

6.雷达图

适用场景:雷达图适用于多维数据(四维以上),且每个维度必须可以排序,数据点一般6个左右,太多的话辨别起来有困难。

优势:主要用来了解公司各项数据指标的变动情形及其好坏趋向。

劣势:理解成本较高。

7.漏斗图

适用场景:漏斗图适用于业务流程多的流程分析,显示各流程的转化率

优势:在网站分析中,通常用于转化率比较,它不仅能展示用户从进入网站到实现购买的最终转化率,还可以展示每个步骤的转化率,能够直观地发现和说明问题所在。

劣势:单一漏斗图无法评价网站某个关键流程中各步骤转化率的好坏。

8.词云

适用场景: 显示词频,可以用来做一些用户画像、用户标签的工作。

优势:很酷炫、很直观的图表。劣势:使用场景单一,一般用来做词频。

9.散点图

适用场景:显示若干数据系列中各数值之间的关系,类似XY轴,判断两变量之间是否存在某种关联。散点图适用于三维数据集,但其中只有两维需要比较。

优势:对于处理值的分布和数据点的分簇,散点图都很理想。如果数据集中包含非常多的点,那么散点图便是最佳图表类型。

劣势:在点状图中显示多个序列看上去非常混乱。

延伸图表:气泡图(调整尺寸大小就成气泡图了)

10.面积图

适用场景:强调数量随时间而变化的程度,也可用于引起人们对总值趋势的注意。

延伸图表:堆积面积图、百分比堆积面积图还可以显示部分与整体之间(或者几个数据变量之间)的关系。

11.指标卡

适用场景:显示某个数据结果&同环比数据。

优势:适用场景很多,很直观告诉看图者数据的最终结果,一般是昨天、上周等,还可以看不同时间维度的同环比情况。

劣势:只是单一的数据展示,最多有同环比,但是不能对比其他数据。

12.计量图

适用场景:一般用来显示项目的完成进度。

优势:很直观展示项目的进度情况,类似于进度条。

劣势:表达效果很明确,数据场景比较单一。

13.瀑布图

适用场景:采用绝对值与相对值结合的方式,适用于表达数个特定数值之间的数量变化关系,最终展示一个累计值。

优势:展示两个数据点之间的演变过程,还可以展示数据是如何累计的。

劣势:没有柱状图、条形图的使用场景多。

14.桑基图

适用场景:一种特定类型的流程图,始末端的分支宽度总各相等,一个数据从始至终的流程很清晰,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。

15.旭日图

适用场景:旭日图可以表达清晰的层级和归属关系,以父子层次结构来显示数据构成情况,旭日图能便于细分溯源分析数据,真正了解数据的具体构成。

优势:分层看数据很直观,逐层下钻看数据。

16.双轴图

适用场景:柱状图+折线图的结合,适用情况很多,数据走势、数据同环比对比等情况都能适用。

优势:特别通用,是柱状图+折线图的结合,图表很直观。

劣势:这个好像没什么劣势,个人感觉。

当然,当你分析数据的时候一定不会只用一种图表,尤其是数据报告中,每次都会用到多个图表,那各种图表的结合效果图也简单展示一下:

(销售业绩分析)

(公司员工信息分析)

下面是深色背景(星空蓝)下的图表效果:

所有的图表均来自有爱的数据工具BDP个人版,大家赶紧把图表用起来!!!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,599评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,629评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,084评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,708评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,813评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,021评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,120评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,866评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,308评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,633评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,768评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,461评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,094评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,850评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,082评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,571评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,666评论 2 350

推荐阅读更多精彩内容