性能优化技巧:有序分组

一、  问题背景与适用场景

通常分组计算都采用hash方案,即先计算分组字段的hash值,hash值相同的记录被分拣到一个小集合里,然后在这个小集合中遍历找分组字段值相同的聚合成一组。分组的复杂度(比较次数),取决于hash函数的重码率。在hash空间比较小时,重码率就高,比较次数就会多,性能会受较大影响。为了提高性能,就需要分配较大的内存来存放 hash 表。另外,有些数据类型(长字串)的 hash 计算也比较慢,这也会影响性能。

如果分组字段是有序的,在分组的时候,每条记录只与上一条记录比较,发现有不同时则新建一个分组,相同则聚合到当前组中。这样的分组运算的复杂度为n(被分组集合的长度),而且没有 hash 计算和重码率的问题,可以获得比 hash 分组更快的性能,而且并不需要太多内存用于存放 hash 表。

SPL提供了这种分组方法,我们实例测试一下,并且与使用hash分组算法的Oracle对比。


二、  测试环境

测试机有两个Intel2670 CPU,主频2.6G,共16核,内存64G,SSD固态硬盘。在此机上安装虚拟机来测试,设置虚拟机为16核、8G内存。


三、  小数据量小结果集测试

在虚拟机上创建数据表orderdetail_1,共三个字段:orderid(整数)、detailid(整数)、amount(实数),前两个字段是主键,生成数据记录8千万行。将此表数据导入Oracle数据库,同时用它生成集算器SPL组表来进行测试。

orderid字段数据升序排列,按orderid进行分组,共有50组,统计每张订单的总金额和明细条数。

1.  Oracle测试

编写查询测试SQL如下:

select   /*+ parallel(n)  */

       orderid, sum(amount) as amount, count(detailid) as details

from orderdetail_1

group by orderid;

其中/*+ parallel(n) */ 用于并行测试,n为并行数。


2.  SPL测试

编写SPL脚本如下:

groups分组时加选项@o就适用分组字段有序时,只比较相邻行的值进行有序分组。


3.  测试结果

测试结果如下,单位(秒):

在8千万行数据的情况下,SPL有序分组的性能提高了一倍左右,并且并行的效果非常好,性能呈线性上升。而使用hash分组的Oracle并行提速效果并不明显。

性能提高程序与数据量有关,当数据量很小时,分组时间占整个查询时间的比例很小,对整体性能的提高也就不明显。但随着数据量的增加,提升效果就会越来越显著。

下面我们再来看看大数据量测试的情况。


四、  大数据量大结果集测试

在虚拟机上创建数据表orderdetail_2,共三个字段:orderid(字符串)、detailid(整数)、amount(实数),前两个字段是主键,生成数据记录24亿行。将此表数据导入Oracle数据库,同时用它生成集算器SPL组表来进行测试。

orderid字段数据升序排列,按orderid进行分组,共有8亿组,统计每张订单的总金额和明细条数。由于查询出的大结果集在Oracle输出需要很长的时间,所以对分组结果再进行一次过滤,只输出订单总金额小于35元的订单,结果只有12条,输出就几乎不占时间了。


1.  Oracle测试

编写查询测试SQL如下:

select * from (

       select   /*+ parallel(n)  */

              orderid, sum(amount) sum_amount, count(detailid) as details

       from orderdetail_2

       group by orderid

)

where sum_amount<35;

其中/*+ parallel(n) */ 用于并行测试,n为并行数。


2.  SPL测试

编写SPL脚本如下:

由于分组结果集很大,无法全部装载到内存,所以使用group函数进行有序分组,返回分组结果集对应的游标,再对游标过滤后取得需要的查询结果。


3.  测试结果

测试结果如下,单位(秒):

在不并行的情况下,SPL有序分组比Oracle性能提升了近6倍左右。因SPL有序分组方法很适合并行,随着并行数的增加,性能提升的效果就越好。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容