利用tess-two和cv4j实现简单的ocr功能

ocr

光学字符识别(英语:Optical Character Recognition, OCR)是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。

Tesseract

Tesseract是Ray Smith于1985到1995年间在惠普布里斯托实验室开发的一个OCR引擎,曾经在1995 UNLV精确度测试中名列前茅。但1996年后基本停止了开发。2006年,Google邀请Smith加盟,重启该项目。目前项目的许可证是Apache 2.0。该项目目前支持Windows、Linux和Mac OS等主流平台。但作为一个引擎,它只提供命令行工具。 现阶段的Tesseract由Google负责维护,是最好的开源OCR Engine之一,并且支持中文。

tess-two是Tesseract在Android平台上的移植。

下载tess-two:

compile 'com.rmtheis:tess-two:8.0.0'

然后将训练好的eng.traineddata放入android项目的assets文件夹中,就可以识别英文了。

1. 简单地识别英文

初始化tess-two,加载训练好的tessdata

    private void prepareTesseract() {
        try {
            prepareDirectory(DATA_PATH + TESSDATA);
        } catch (Exception e) {
            e.printStackTrace();
        }

        copyTessDataFiles(TESSDATA);
    }

    /**
     * Prepare directory on external storage
     *
     * @param path
     * @throws Exception
     */
    private void prepareDirectory(String path) {

        File dir = new File(path);
        if (!dir.exists()) {
            if (!dir.mkdirs()) {
                Log.e(TAG, "ERROR: Creation of directory " + path + " failed, check does Android Manifest have permission to write to external storage.");
            }
        } else {
            Log.i(TAG, "Created directory " + path);
        }
    }

    /**
     * Copy tessdata files (located on assets/tessdata) to destination directory
     *
     * @param path - name of directory with .traineddata files
     */
    private void copyTessDataFiles(String path) {
        try {
            String fileList[] = getAssets().list(path);

            for (String fileName : fileList) {

                // open file within the assets folder
                // if it is not already there copy it to the sdcard
                String pathToDataFile = DATA_PATH + path + "/" + fileName;
                if (!(new File(pathToDataFile)).exists()) {

                    InputStream in = getAssets().open(path + "/" + fileName);

                    OutputStream out = new FileOutputStream(pathToDataFile);

                    // Transfer bytes from in to out
                    byte[] buf = new byte[1024];
                    int len;

                    while ((len = in.read(buf)) > 0) {
                        out.write(buf, 0, len);
                    }
                    in.close();
                    out.close();

                    Log.d(TAG, "Copied " + fileName + "to tessdata");
                }
            }
        } catch (IOException e) {
            Log.e(TAG, "Unable to copy files to tessdata " + e.toString());
        }
    }
取景框.JPG

拍完照后,调用startOCR方法。

    private void startOCR(Uri imgUri) {
        try {
            BitmapFactory.Options options = new BitmapFactory.Options();
            options.inSampleSize = 4; // 1 - means max size. 4 - means maxsize/4 size. Don't use value <4, because you need more memory in the heap to store your data.
            Bitmap bitmap = BitmapFactory.decodeFile(imgUri.getPath(), options);

            String result = extractText(bitmap);
            resultView.setText(result);

        } catch (Exception e) {
            Log.e(TAG, e.getMessage());
        }
    }

extractText()会调用tess-two的api来实现ocr文字识别。

    private String extractText(Bitmap bitmap) {
        try {
            tessBaseApi = new TessBaseAPI();
        } catch (Exception e) {
            Log.e(TAG, e.getMessage());
            if (tessBaseApi == null) {
                Log.e(TAG, "TessBaseAPI is null. TessFactory not returning tess object.");
            }
        }

        tessBaseApi.init(DATA_PATH, lang);

        tessBaseApi.setImage(bitmap);
        String extractedText = "empty result";
        try {
            extractedText = tessBaseApi.getUTF8Text();
        } catch (Exception e) {
            Log.e(TAG, "Error in recognizing text.");
        }
        tessBaseApi.end();
        return extractedText;
    }

最后,显示识别的效果,此时的效果还算可以。


简单地识别英文.JPG

2. 识别代码

接下来,尝试用上面的程序识别一段代码。


识别代码.JPG

此时,效果一塌糊涂。我们重构一下startOCR(),增加局部的二值化处理。

    private void startOCR(Uri imgUri) {
        try {
            BitmapFactory.Options options = new BitmapFactory.Options();
            options.inSampleSize = 4; // 1 - means max size. 4 - means maxsize/4 size. Don't use value <4, because you need more memory in the heap to store your data.
            Bitmap bitmap = BitmapFactory.decodeFile(imgUri.getPath(), options);

            CV4JImage cv4JImage = new CV4JImage(bitmap);
            Threshold threshold = new Threshold();
            threshold.adaptiveThresh((ByteProcessor)(cv4JImage.convert2Gray().getProcessor()), Threshold.ADAPTIVE_C_MEANS_THRESH, 12, 30, Threshold.METHOD_THRESH_BINARY);
            Bitmap newBitmap = cv4JImage.getProcessor().getImage().toBitmap(Bitmap.Config.ARGB_8888);

            ivImage2.setImageBitmap(newBitmap);

            String result = extractText(newBitmap);
            resultView.setText(result);

        } catch (Exception e) {
            Log.e(TAG, e.getMessage());
        }
    }

在这里,使用cv4j来实现图像的二值化处理。

            CV4JImage cv4JImage = new CV4JImage(bitmap);
            Threshold threshold = new Threshold();
            threshold.adaptiveThresh((ByteProcessor)(cv4JImage.convert2Gray().getProcessor()), Threshold.ADAPTIVE_C_MEANS_THRESH, 12, 30, Threshold.METHOD_THRESH_BINARY);
            Bitmap newBitmap = cv4JImage.getProcessor().getImage().toBitmap(Bitmap.Config.ARGB_8888);

图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果。图像的二值化有利于图像的进一步处理,使图像变得简单,而且数据量减小,能凸显出感兴趣的目标的轮廓。

cv4j的github地址:https://github.com/imageprocessor/cv4j

cv4jgloomyfish和我一起开发的图像处理库,纯java实现。

再来试试效果,图片中间部分是二值化后的效果,此时基本能识别出代码的内容。


先做二值化再识别代码.JPG

3. 识别中文

如果要识别中文字体,需要使用中文的数据包。可以去下面的网站上下载。

https://github.com/tesseract-ocr/tessdata

跟中文相关的数据包有chi_sim.traineddata、chi_tra.traineddata,它们分别表示是简体中文和繁体中文。

tessBaseApi.init(DATA_PATH, lang);

前面的例子都是识别英文的,所以原先的lang值为"eng",现在要识别简体中文的话需要将其值改为"chi_sim"。

识别中文.JPG

最后

本项目只是demo级别的演示,离生产环境的使用还差的很远。
本项目的github地址:https://github.com/fengzhizi715/Tess-TwoDemo

为何说只是demo级别呢?

  • 数据包很大,特别是中文的大概有50多M,放在移动端的肯定不合适。一般正确的做法,都是放在云端。
  • 识别文字很慢,特别是中文,工程上还有很多优化的空间。
  • 做ocr之前需要做很多预处理的工作,在本例子中只用了二值化,其实还有很多预处理的步骤比如倾斜校正、字符切割等等。
  • 为了提高tess-two的识别率,可以自己训练数据集。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容

  • 不好意思,这个名字忒俗了,忒不文雅了,不过,这句话道出了我的心思。 工作中,你有没有发现这样一种人?...
    大钱小胖阅读 294评论 2 1
  • 马上就要这个学期的学习啦,马上就有两门超级无敌难的考试过了之后就是短暂的休息时间,之后就可以继续认真学习WSET然...
    LuryYang阅读 431评论 0 0
  • 洛克菲勒自传 约翰·D·洛克菲勒 美国石油大王,洛克菲勒财团的创始人,美...
    哇鲁鲁220阅读 459评论 0 0
  • 今天早上送女儿到幼儿园,老师带领别的孩子在跳绳。看着别的小朋友都会跳了,我女儿还不会跳,于是留下来看看老师会不会教...
    多多少少7阅读 715评论 1 0