俱往矣,AI可以从Transformers模型始(一)

2017年Ashish Vaswani等人发表论文《Attention is all you need》介绍了一种新的架构,称为带有编码器和解码器的转换器(Transformers),它是仅依赖于注意力机制来传递信息的模型。

Transformer整体结构:Encoder-Decoder结构

image.png

在Transformer网络结构图的左边部分为Encoder 部分,右边部分为Decoder部分和最后的线性输出层。其中Encoder和Decoder各有6层。一个完整可训练的网络结构便是encoder和decoder的堆叠。

Transformer架构使用了注意力机制,能够处理长序列的依赖关系。其明显的优点
• 并行计算:由于自注意力机制的引入,Transformer可以实现并行计算,加快训练速度。
• 长序列处理:相比传统的RNN和CNN,Transformer可以处理更长的序列,是由于自注意力机制可以学习到全局的序列信息。
• 模块化结构:Transformer由编码器和解码器两部分组成,每部分都包含了多层相同的模块,这种模块化结构使得Transformer更易于扩展和调整。
缺点
(1)粗暴的抛弃RNN和CNN虽然非常炫技,但是它也使模型丧失了捕捉局部特征的能力,RNN + CNN + Transformer的结合可能会带来更好的效果。
(2)Transformer失去的位置信息其实在NLP中非常重要,而论文中在特征向量中加入Position Embedding也只是一个权宜之计,并没有改变Transformer结构上的固有缺陷。

自2017年推出之后,Transformer已经形成了自己的家族体系。


image.png

在自然语言处理NLP领域,总体的趋势是:LSTM/CNN→Transformer。NLP领域分为两大不同类型的任务:
• 理解类人工智能
• 生成式人工智能
这两个领域的研发,已经收敛到两个不同的预训练模型框架里:

  1. 自然语言理解,技术体系统一到了以BERT为代表的“双向语言模型预训练+应用fine-tuning”模式;
  2. 自然语言生成类任务,其技术体系则统一到以GPT为代表的“自回归语言模型(即从左到右单向语言模型)+Zero/Few Shot Prompt”模式。

随着Transformer逐渐统一了NLP,计算机视觉领域显然受到了启发。一些沉迷于CNN神经网络的专家,开始将Transformer引入计算机视觉方面进行研究,取得的效果明显:
图像分类:ViT(Vision Transformer)是一种将Transformer应用于图像分类的模型。

image.png

目标检测:DETR(Detection Transformer)是基于Transformer的目标检测模型。DETR在COCO数据集上取得了与Faster R-CNN方法相当的结果。
语义分割:Transformer可以用于语义分割任务,其中每个像素被视为一个token。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349

推荐阅读更多精彩内容