双重差分模型

双重差分模型在政策评估评估中被广泛应用。也是在实证研究中非常重要的一种模型构建,DID方法主要用于政策评估,尤其是对我国渐进式政策改革的评估,具有很好的模型拟合效果。

DID方法利用政策的准自然实验将研究对象随机的分成处理组和对照组,其中受政策影响的个体称为处理组,反之是对照组。为了估计政策效应,需要先比较处理组在政策发生前后的变化,但这种变化的部分也可能是时间效应所导致的。所以需要引入对照组在政策发生前后的结果变量的变化来提出处理组内的时间效应。即通过对照组来假设构建一个只存在时间效应而没有受到政策影响的处理组。

1、双重差分模型(DID)

3种方式来理解DID:表格法、画图法和回归法。一般而言,最终需要通过回归来具体识别政策效应的影响。

表格法:首先分别计算处理组和对照组在政策发生前后结果变量的均值。然后用处理组政策发生后的均值减去政策发生前的均值得到处理组政策前后的变化,对照组也进行同样操作得到对照组在政策发生前后的变化。最后,我们用处理组的变化减去对照组的变化,即剔除掉时间效应,就可以得到政策效应,两次相减的过程就体现了双重差分的思想。


画图法:(略)

这里需要注意的是,我们运用该方法前,需要假设二者存在共同趋势。即除了政策外,两者并没有显著不同,也就是说,政策发生前,对照组与处理组的结果变量呈现出共同的变化趋势,且趋势改变速率差异不大。


对于共同趋势的检验通常利用“安慰剂检验”。需要注意的是,共同趋势检验是安慰剂检验,但是反过来则不成立,这两者是包含关系。安慰剂检验方法有很多,接下来介绍3种方法:

第一种,采用政策发生之前的数据,将政策实施前的除第一年之外的所有年份“人为地”设定成为处理组的政策实施年份。然后,根据DID模型逐年回归,当所有回归中的交互项系数都不显著时,说明通过了安慰剂检验,表明之前识别的政策平均效应时可靠的,否则就是不可靠的。如果政策实施前有n年数据,那么就需要做n-1次回归。

第二种,“人为地”随机选择政策实施对象(处理组),然后使用全样本做DID回归。如果交互项系数不显著,则判断政策对随机选择的处理组都不存在政策效应,可以进一步证明之前识别的政策平均效应结果时可靠稳健的。

第三种,改变被解释变量,通常选择理论上不受政策影响的其他变量,保持真实的对照组和处理组、真实的政策实施时间,重新进行DID回归,理想的结果是,该政策的实施对其他被解释变量都不存在政策效应。

当对照组和处理组确实不存在共同趋势时,提供三种解决思路:

第一种,寻找更好的对照组,也可以把多个对照组加权构成一个虚拟对照组,这样尽管每个对照组都与实验组的时间趋势不同,但加权后的虚拟对照组的时间趋势与处理组相同。(合成控制法)Abadie等(2010)用该方法研究加州的控烟法对烟草消费的影响,他们利用其他州的数据加权模拟了加州在没有该法案时潜在烟草消费水平。

第二种,估算出因时间趋势不同带来的偏差,然后从双重差分结果中减去这个偏差,即三重差分法。三重差分法的思路为,既然两个地区的时间趋势不一样,那么我们可以分别在两个地区寻找一个没有受到干预影响的人群或行业,通过对这两组的双重差分估算出时间趋势的差异,然后在从原来实验组和对照组的双重差分估算值中减去这个时间趋势差异。

假设B州针对65岁及以上老年人(E)引入了新的医保政策,而该政策不适用于65岁以下人群(N),欲考察此政策对于健康状况y的影响。

双重差分法的思路为:

1、以B州65岁及以上人群为实验组,65岁以下人群为对照组,这种方法可能存在的缺陷为,年轻人和老年人的健康状况随着时间可能发生不同的变化;

2、以相邻A州65岁及以上的老年人作为对照组,但是这样不能保证政策实施前,两个州的老年人健康状况有相同的时间趋势。

考虑构建三重差分模型,首先将B州65岁及以上人群作为实验组,65岁以下人群作为对照组,然后使用A州的数据衡量A州的年轻人和老年人的健康状况随时间变化的不同趋势,最后再从双重差分的结果中把这一不同减去,就能估计出政策效应。


参考资料:方红生教授,面板数据分析与stata应用
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353