【算法提高班】并查集

关于并查集的题目不少,官方给的数据是 30 道(截止 2020-02-20),但是有一些题目虽然官方没有贴并查集标签,但是使用并查集来说确非常简单。这类题目如果掌握模板,那么刷这种题会非常快,并且犯错的概率会大大降低,这就是模板的好处。

我这里总结了几道并查集的题目:

并查集概述

并查集算法,主要是解决图论中「动态连通性」问题的

Union-Find 算法解决的是图的动态连通性问题,这个算法本身不难,能不能应用出来主要是看你抽象问题的能力,是否能够把原始问题抽象成一个有关图论的问题。

如果你对这个算法不是很明白,推荐看一下这篇文章Union-Find 算法详解,讲的非常详细。

你可以把并查集的元素看成部门的人,几个人可以组成一个部门个数。

并查集核心的三个方法分别是union, find, connected

  • union: 将两个人所在的两个部门合并成一个部门(如果两个人是相同部门,实际山不需要合并)

(图来自 labuladong)

  • find: 查找某个人的部门 leader
  • connnected: 判断两个人是否是一个部门的

(图来自 labuladong)

模板

这是一个我经常使用的模板,我会根据具体题目做细小的变化,但是大体是不变的。

class UF:
    parent = {}
    cnt = 0
    def __init__(self, M):
        n = len(M)
        for i in range(n):
            self.parent[i] = i
            self.cnt += 1

    def find(self, x):
        while x != self.parent[x]:
            x = self.parent[x]
        return x
    def union(self, p, q):
        if self.connected(p, q): return
        self.parent[self.find(p)] = self.find(q)
        self.cnt -= 1
    def connected(self, p, q):
        return self.find(p) == self.find(q)

如果你想要更好的性能,这个模板更适合你,相应地代码稍微有一点复杂。


```python
class UF:
    parent = {}
    size = {}
    cnt = 0
    def __init__(self, M):
        n = len(M)
        for i in range(n):
            self.parent[i] = i
            self.size[i] = 1
            self.cnt += 1

    def find(self, x):
        while x != self.parent[x]:
            x = self.parent[x]
            # 路径压缩
            self.parent[x] = self.parent[self.parent[x]];
        return x
    def union(self, p, q):
        if self.connected(p, q): return
        # 小的树挂到大的树上, 使树尽量平衡
        leader_p = self.find(p)
        leader_q = self.find(q)
        if self.size[leader_p] < self.size[leader_q]:
            self.parent[leader_p] = leader_q
        else:
            self.parent[leader_q] = leader_p
        self.cnt -= 1
    def connected(self, p, q):
        return self.find(p) == self.find(q)

大家可以根据情况使用不同的模板。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容