对JVM的监控
1.首先添加依赖
<!-- https://mvnrepository.com/artifact/io.prometheus/simpleclient_hotspot -->
<dependency>
<groupId>io.prometheus</groupId>
<artifactId>simpleclient_hotspot</artifactId>
<version>0.6.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/io.prometheus/simpleclient_spring_boot -->
<dependency>
<groupId>io.prometheus</groupId>
<artifactId>simpleclient_spring_boot</artifactId>
<version>0.6.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/io.prometheus/simpleclient_servlet -->
<dependency>
<groupId>io.prometheus</groupId>
<artifactId>simpleclient_servlet</artifactId>
<version>0.6.0</version>
</dependency>
2.启用Prometheus Metrics
添加注解@EnablePrometheusEndpoint
@SpringBootApplication
@EnablePrometheusEndpoint
public class CoreApplication extends WebMvcConfigurerAdapter implements CommandLineRunner {
public static void main(String[] args) {
SpringApplication springApplication = new SpringApplication(CoreApplication.class);
springApplication.run(args);
}
@Override
public void run(String... strings) throws Exception {
DefaultExports.initialize();
}
}
向外暴露接口
@Configuration
public class MonitoringConfig {
@Bean
ServletRegistrationBean servletRegistrationBean() {
return new ServletRegistrationBean(new MetricsServlet(), "/metrics");
}
}
访问 localhost:8080/metrics 可以看到jvm相关的指标.
添加拦截器,对所有接口进行拦截
@SpringBootApplication
@EnablePrometheusEndpoint
public class CoreApplication extends WebMvcConfigurerAdapter implements CommandLineRunner {
@Override
public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(new PrometheusMetricsInterceptor()).addPathPatterns("/**");
}
}
自定义指标
@Component
public class PrometheusMetricsInterceptor extends HandlerInterceptorAdapter {
// 创建计数器
static final Counter requestCounter = Counter.build()
// 计数器名字 必填
.name("module_core_http_requests_total")
// 计数器标签 选填
.labelNames("path", "method", "code")
// 设计量度 必填
.help("Total requests.").register();
static final Gauge inprogressRequests = Gauge.build()
.name("module_core_http_inprogress_requests").labelNames("path", "method", "code")
.help("Inprogress requests.").register();
static final Gauge requestTime = Gauge.build()
.name("module_core_http_requests_costTime").labelNames("path", "method", "code")
.help("requests cost time.").register();
static final Histogram requestLatencyHistogram = Histogram.build().labelNames("path", "method", "code")
.name("module_core_http_requests_latency_seconds_histogram").help("Request latency in seconds.")
.register();
static final Summary requestLatency = Summary.build()
.name("module_core_http_requests_latency_seconds_summary")
// 添加第50百分位数(=中位数),允许误差为5%
.quantile(0.5, 0.05)
// 添加第90个百分位数,允许误差为1%
.quantile(0.9, 0.01)
.labelNames("path", "method", "code")
.help("Request latency in seconds.").register();
private Histogram.Timer histogramRequestTimer;
private Summary.Timer summaryTimer;
private Gauge.Timer gaugeTimer;
@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
String requestURI = request.getRequestURI();
String method = request.getMethod();
int status = response.getStatus();
inprogressRequests.labels(requestURI, method, String.valueOf(status)).inc();
histogramRequestTimer = requestLatencyHistogram.labels(requestURI, method, String.valueOf(status)).startTimer();
summaryTimer = requestLatency.labels(requestURI, method, String.valueOf(status)).startTimer();
gaugeTimer = requestTime.labels(requestURI, method, String.valueOf(status)).startTimer();
return super.preHandle(request, response, handler);
}
}
然后就可以去Prometheus监控指标了,搭建可以参考我上次写的文档
//www.greatytc.com/p/4adfc5d111b6
我们这边直接开始配置文件
修改配置文件prometheus.yml(需要注意的是格式必须要正确,连个空格都不能多)
添加:
- job_name: 'jvm_test'
static_configs:
- targets: ['192.168.1.200:8080']
labels:
instance: 'jvm-test
添加完成之后重启服务即可
添加指标
添加完成之后效果图