学习笔记

【00】

GEO数据库。与后面差不多。

【PCA,KEGG,GO,火山图等】

> getwd()
[1] "D:/R_code/follow_practice/xuetu_GEO_follow/week_practise/01_follow_practise/00_TNBC_GSE76275"
> dir()
 [1] "exprSet_by_group.Rdata"        "finalSet.Rdata"               
 [3] "GPL570.annot.gz"               "GSE76275_eSet.Rdata"          
 [5] "GSE76275_series_matrix.txt.gz" "heatmap_top100_logFC.png"     
 [7] "ID2gene.Rdata"                 "kegg_up_down.png"             
 [9] "nrDEG.out"                     "nrDEG_by_logFC.Rdata"         
[11] "pca_plot.png"                  "readme.txt"                   
[13] "Step01_getGEO.R"               "step02_getmarix.R"            
[15] "step03_gene_symbol.R"          "step04_rm_nogene.R"           
[17] "step05_PCA.R"                  "step06_DEG.R"                 
[19] "step07_pheatmap.R"             "Step08_Volcano_plot.R"        
[21] "step09_KEGG_GO.R"              "TNBC_breastcancer.Rproj"      
[23] "volcano.png"    

【1】.02_GSE108565【比较完整】

.GEO:【hclust富集分析,DEG(limma包),volcano,heatmap,KEGG,GO分析】

dir()
 [1] "02_GSE108565.Rproj"          
 [2] "dotplot_gene_diff_BP.png"    
 [3] "dotplot_gene_diff_CC.png"    
 [4] "dotplot_gene_diff_MF.png"    
 [5] "dotplot_gene_down_BP.png"    
 [6] "dotplot_gene_down_CC.png"    
 [7] "dotplot_gene_down_MF.png"    
 [8] "dotplot_gene_up_BP.png"      
 [9] "dotplot_gene_up_CC.png"      
[10] "dotplot_gene_up_MF.png"      
[11] "final_exprSet.Rdata"         
[12] "go_enrich_results.Rdata"     
[13] "gset.Rdata"                  
[14] "hclust.png"                  
[15] "heatmap.png"                 
[16] "kegg_up_down.png"            
[17] "nrDEG.out"                   
[18] "nrDEG.Rdata"                 
[19] "pca_plot.png"                
[20] "step01_download.R"           
[21] "step02_handle_data.R"        
[22] "step03_DEG_heatmap_volcano.R"
[23] "step04_KEGG_GO.R"            
[24] "volcano.png"   

【2】.UCSCXenaTools

【使用UCSCXenaTools下载TCGA数据并处理】
dir()
 [1] "01_UCSCXenaTools_download.R"       
 [2] "02_UCSCXenaTools_.R"               
 [3] "03_TCGA-BRCA.Rproj"                
 [4] "GDCdata"                           
 [5] "MANIFEST.txt"                      
 [6] "race_sample.Rdata"                 
 [7] "step01_download_handle.R"          
 [8] "TCGA-BRCA.GDC_phenotype_file.Rdata"
 [9] "TCGA-BRCA.GDC_phenotype_file.tsv"  
[10] "TCGA-BRCA.htseq_counts.Rdata"      
[11] "TCGA-BRCA.htseq_counts.tsv"        
[12] "必读.txt"    

 getwd()
[1] "D:/R_code/follow_practice/xuetu_GEO_follow/week_practise/01_follow_practise/03_TCGA-BRCA"

【3】下载合并TCGA文件

【合并文件(★),lncRNA,miRNA的提取,相关注释】
【未完成:①ncRNA的表达谱标准化一下,再自行下载microRNA的数据,就可以构建ceRNA的网络 ②按照pvalue和fc来排序,选择自己一定数量的基因,数量你来定,最终得到基因列表gene(我没有演示,需要自己做)】

【此处GO分析和KEGG分析似乎与TCGA不太一样,后面再看看】

dir()
 [1] "02_GTF_mRNA_ncRNA.R"                       
 [2] "03_DESeq.R"                                
 [3] "04_01_DIY.R"                               
 [4] "04_02_DIY.R"                               
 [5] "04_GO_KEGG.R"                              
 [6] "04_test.Rproj"                             
 [7] "BRCA_DEG.xls"                              
 [8] "dds_DEseq.Rda"                             
 [9] "expr_df.Rda"                               
[10] "expr_df_nopoint.Rda"                       
[11] "gdc_download_20210717_084045.768266"       
[12] "gdc_download_20210717_084045.768266.tar.gz"
[13] "gdc_manifest_20210717_083623.txt"          
[14] "gtf_df.Rda"                                
[15] "Homo_sapiens.GRCh38.104.chr.gtf"           
[16] "Homo_sapiens.GRCh38.104.chr.gtf.gz"        
[17] "Homo_sapiens.GRCh38.104.chr.gtf0000"       
[18] "LuminalABvsNormal_FC6.TSS.pdf"             
[19] "MANIFEST.txt"                              
[20] "metadata.cart.2021-07-17.json"             
[21] "metadata.Rda"                              
[22] "mRNA_exprSet.Rda"                          
[23] "mRNA_exprSet_vst.Rda"                      
[24] "readme.txt"                                
[25] "resSig.Rdata"                              
[26] "result.Rda"                                
[27] "TCGA-BRCA.htseq_counts.tsv"                
[28] "TCGA-BRCA.htseq_counts.tsv.gz"             
[29] "volcano.png"                               



 getwd()
[1] "D:/R_code/follow_practice/xuetu_GEO_follow/week_practise/01_follow_practise/04_test"

【4】这里是比较TP53的。跟【3】有类似之处。可以结合起来看。

【亮点:先将火山图和热图的代码用函数包装起来,然后,进行limma或edge进行差异分析,最后再画图】【KEGG和GO富集分析也是同样的】

【这里的函数包可以直接调用到别处】

【中间问题:】

  ggsave( volcano, filename = './fig/volcano.png' ))

###出现报错,运行【1】同样的代码,未报错,原因未明
报错图片
dir()
[1] "data"                 "fig"                 
[3] "nrDEG.Rdata"          "raw_data"            
[5] "step01_downpackage.R" "step02_download.R"   
[7] "step03_DEG.R"         "step04_KEGG_GO.R"    
[9] "TP53_BACR.Rproj"     
> dir()
[1] "data"                 "fig"                 
[3] "nrDEG.Rdata"          "raw_data"            
[5] "step01_downpackage.R" "step02_download.R"   
[7] "step03_DEG.R"         "step04_KEGG_GO.R"    
[9] "TP53_BACR.Rproj"     
> getwd()
[1] "D:/R_code/follow_practice/xuetu_GEO_follow/week_practise/01_follow_practise/01_TP53_BRCA"

【05】

【shell】cd/d D:

D:\R_code\follow_practice>cd/d xuetu_GEO_follow/week_practise/01_follow_practise/05_GBM_GSE4290/shell


【06】

GEO数据挖掘-第三期-口腔鳞状细胞癌(OSCC)

【绘制进化树 WGCNA】【构建共表达矩阵】【TOM图】






2021.7.23 22:30

生存分析

以下内容重要

【生存分析】

存在问题:用包下载的方式和直接网上下载的存在差异。读取有异常。因此建议直接网上下载在分析。

R基于TCGA数据画生存曲线

##来源
"D:/R_code/follow_practice/xuetu_GEO_follow/week_practise/02_follow/02_TCGA_KM_KIRC"

后面分析内容

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容