基于R筛选过滤低丰度物种的几种方式

首先导入输入文件物种某水平的分类表

gene <- read.delim('../nr/Phylum.txt',row.names = 1, sep = '\t', stringsAsFactors = FALSE, check.names = FALSE) 
图片.png

百分比转化

方式一

gene_precent1 <- as.data.frame(apply(gene, 2, function(x){x/sum(x)}))

方式二

gene_precent2 <-  as.data.frame(t(t(gene)/colSums(gene,na=T))*100)
colSums(gene_precent2)
图片.png

在微生物组数据分析中,样品分析之前我们经常需要对微生物组的丰度进行筛选,

  1. 过滤在任何样本中百分比小于1%的物种
gene_filter <-data.frame(gene_precent1[apply(gene_precent1,1,max)>0.01,])
  1. 保留在任何样品中百分比大于 1%的物种
gene_filter <-data.frame(gene_precent1[apply(gene_precent1,1,min)>0.001,])
  1. 过滤样品平均相对丰度小于1%的物种
gene_filter2 <- data.frame(gene_precent1[which(apply(gene_precent1, 1, function(x){mean(x)})
                                >0.01),], check.names=F)

另一种方法

gene_filter <- gene_precent1[which(rowMeans(gene_precent1) >= 0.01), ]    
  1. 只保留相对丰度总和高于 0.005 的属,换成rowSums即可
gene_filter <- gene_precent1[which(rowSums(gene_precent1) >= 0.005), ]    
  1. 过滤在一半或者大于一半样品中丰度为0的物种
cutoff = .5
gene_filter <- data.frame(gene_precent1[which(apply(gene_precent1, 1, function(x){length(which
                                                                (x!= 0))/length(x)}) >= cutoff),])

提一点, 代码中x!=0其实可以换为x大于等于某个值,就代表过滤在一半或者大于一半样品中丰度大于等于多少的物种,注意变通~~~

图片.png

另外,在有的文献中还有是过滤每组中至少一半的样品丰度丰度大于0.1%,也就是说当你有俩组每组6个样品的情况下,你得保证每组都是至少有3个样品的丰度大于0.1%。其实也很简单,我们分别在各组中去执行上述代码,最后筛选到的物种再合并一下就OK了,用到了union函数,它的功能是会整合出现在x数据框中或y数据框中的数据,同时去除了两个数据框中重复的部分。

cutoff = 0.5
gene1 <- data.frame(gene_precent1[,1:6][which(apply(gene_precent1[,1:6], 1, function(x){length(which
                                                                                             (x>=0.001))/length(x)}) > cutoff),])
gene2 <- data.frame(gene_precent1[,7:12][which(apply(gene_precent1[,7:12], 1, function(x){length(which
                                                                                               (x>=0.001))/length(x)}) > cutoff),])

gene_filter1 <- gene_precent1[union(rownames(gene1),rownames(gene2)),]

提供另一种方法过滤在一半或者大于一半样品中丰度为0的物种

gene_filter <- gene_precent1
gene_filter[gene_filter >0] <- 1
gene_filter <- gene_precent1[which(rowSums(gene) >= ncol(gene_precent1)/2), ]  

若对代码有问题或者有更便捷的方式可以留言回复,现在简书不能发送公众号二维码,欢迎大家搜索BioparaMeta关注,会定时分享一些生信小技巧,大家一起交流进步~~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容