40丨数据挖掘实战(2):用逻辑回归分析信用卡诈骗

构建逻辑回归分类器

逻辑回归是分类方法,主要解决二分类问题。
在逻辑回归中使用了 Logistic 函数,也称为 Sigmoid 函数。

为什么逻辑回归算法是基于 Sigmoid 函数实现的呢?你可以这样理解:我们要实现一个二分类任务,0 即为不发生,1 即为发生。我们给定一些历史数据 X 和 y。其中 X 代表样本的 n 个特征,y 代表正例和负例,也就是 0 或 1 的取值。通过历史样本的学习,我们可以得到一个模型,当给定新的 X 的时候,可以预测出 y。这里我们得到的 y 是一个预测的概率,通常不是 0% 和100%,而是中间的取值,那么我们就可以认为概率大于 50% 的时候,即为发生(正例),概率小于 50% 的时候,即为不发生(负例)。这样就完成了二分类的预测。

Sigmoid 函数

函数图像

在sklearn 中,我们使用** LogisticRegression() 函数**构建逻辑回归分类器,构造参数:

  1. penalty:惩罚项,取值为 l1 或 l2,默认为 l2。当模型参数满足高斯分布的时候,使用 l2,当模型参数满足拉普拉斯分布的时候,使用 l1;
  2. solver:代表的是逻辑回归损失函数的优化方法。有 5 个参数可选,分别为 liblinear、lbfgs、newton-cg、sag 和 saga。默认为 liblinear,适用于数据量小的数据集,当数据量大的时候可以选用 sag 或 saga 方法。
  3. max_iter:算法收敛的最大迭代次数,默认为 10。
  4. n_jobs:拟合和预测的时候 CPU 的核数,默认是 1,也可以是整数,如果是 -1 则代表 CPU的核数。

模型评估指标

之前对模型做评估时,通常采用的是准确率 (accuracy),它指的是分类器正确分类的样本数与总体样本数之间的比例。这个指标对大部分的分类情况是有效的,不过当分类结果严重不平衡的时候,准确率很难反应模型的好坏。
对于分类不平衡的情况,有两个指标非常重要,它们分别是精确度和召回率

P 或 N 代表预测为正例还是负例,P 为正,N 为负;T 或 F代表的是预测结果是否正确,T 为正确,F 为错误。

精确率 P = TP/ (TP+FP),对应怖分子例子,在所有判断为恐怖分子的人数中,真正是恐怖分子的比例。
召回率 R = TP/ (TP+FN),也称为查全率。代表的是恐怖分子被正确识别出来的个数与恐怖分子总数的比例。
F1指标综合了精确率和召回率,F1 作为精确率 P 和召回率 R 的调和平均,数值越大代表模型的结果越好。


F1指标公式
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,776评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,527评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,361评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,430评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,511评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,544评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,561评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,315评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,763评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,070评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,235评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,911评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,554评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,173评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,424评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,106评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,103评论 2 352