涡流 & 光涡 (A superexplanation to vortex electricfield.)

    本文用于纠正网络中“广为流传”的“涡旋电场不真实存在”的理解谬误,“涡旋电场”是真实存在的。当然下面即将写下的内容并不仅限于此。如何界定“涡旋电场”?又应该如何认识它呢?“涡旋电流”又源于什么,与其相对的概念“径向电流”又是指什么,“涡流”的基本应用原理,以及,“涡旋”这个词语的一些扩展内容,以上。

"Eddy current" from @wikipedia
Eddy current: with infinitesimal eddy current synthesis (Ampere's Law)

    How to give "Eddy current" a definition? First we should learn something about the "Vortex electric field", as the Maxwell equation hold (Faraday's law, of course, Ampere's Law, but will not be used in the article), the time-varying magnetic field will induce an electric field, which can be expressed as

\oint \overrightarrow{\color{green}  E}\cdot d \overrightarrow{\color{green}l} =\frac{\partial}{\partial t} \oiint \overrightarrow{\color{green}B}\cdot d\overrightarrow{\color{green}  S},

    from which we can easily see that the induced electric field is rotational, ie.

\oint \overrightarrow{\color{green}  E}\cdot d \overrightarrow{\color{green}l} \neq0 .

    This kind of induce field is called "Vortex electric field", and its name means the field is different from the electrostatic field, work will be done if a charge go through a loop in it.

    After that, we can say the "Eddy current" is current occured in the closed loop in conductor due to the "Vortex electric field", as figure below, Aluminum plate of induction watt-hour meter is an example of the eddy current.

Aluminum plate of induction watt-hour meter, by the way, the induction cooker is also an application.

    It is also an important thing to referance "The Vortex electric field is provided by both the magnetic field emit by the eddy current and the magnetic field between the magnet and the current loop changes due to the motion of the non-cutting magnetic line", and it is the reason why "Farady's Law" exist.

    In a general way, the experiment of "magnetism of rotation" named by François Arago, is the first time "Eddy current" has been discovered as a symbol, but this judgement is, to some extent, inaccurate. From now on, this phenomenon will be called as "Radial electric current".

    As shown below, the magnetic field is perpendicular to the page for a half and outside for the other side.

Experiment of Arago, Analysis

    When the copper plate begin to rotate, with \omega, draw out the induceed current gennerated by the law of cutting the magnetic induction line, we can easily get the current, this current, which is due to the motion of cutting the magnetic induction line, is called "Radial electric current", different from "Eddy current" with their different mechanism. (As the graph below)

Radial electric current, Analysis

    These knowleges are popular in applications such as solid iron transformer core, (to make the core out of thin laminations parallel to the field to protect Joule heating effect), using the  eddy current (the repulsive effects) in levitation, etc.

A cross section through a linear motor placed above a thick aluminium slab.

    Finally, I will give out a new senary of the volcabulary "vortex" in Optoelectronics and Laser, which is about "propagation of higher-order coherent vortices and optical vortices".

    近年,涡旋光束在大气湍流中的传输特性和相干涡旋、光涡旋的动态演化成为光学微操控、光量子计算、光数据存储、量子密码系统和激光通信等领域的研究热点。下面给出的是以“LG光束”为例的理论模型。           

    在空间域中,LG 光束在入射面 z=0 处的场分布为E(s,0)=(\frac{\sqrt2s}{w_0})^mL^m_n(\frac{2s^2}{w_0^2})exp(im\theta)

    式中,s=(sx,sy)为二维平面矢量;w_0为 Gauss 部分的束腰宽度;\theta为方位角;L_n^m(\ \bullet\ )为缔合 Laguerre 多项式;m为拓扑荷,ie. 光束中每个光子携带的轨道角动量;n为径向指数, ie. 光束的(n+1)个径向节点, Gauss 光束以及 Gauss 涡旋光束都是其特殊情况。

    利用广义 Huygens-Fresnel 原理,并调用谢尔相关项进行计算,最终可以得到LG光束在大气湍流中的交叉谱密度函数的解析表达式为W(\rho_1,\rho_2,z)=(\frac{k}{2\pi z})^2A_xA_yexp[-\frac{(\rho_1-\rho_2)^2}{\rho_0^2}]exp[-\frac{ik}{2z}(\rho_1^2-\rho_2^2)]\frac{2}{2^{4n+2m}(n!)} \times\sum_{t_1=0}^m \sum_{r_1=0}^n \sum_{t_2=0}^m \sum_{r_2=0}^n (-i)^{r_1}i^{r_2}\left(    \begin{array}{c}      n \\      t_1    \end{array}  \right)\left(    \begin{array}{c}      m \\      r_1    \end{array}  \right)\left(    \begin{array}{c}      n \\      t_2    \end{array}  \right)\left(    \begin{array}{c}      m \\      r_2    \end{array}  \right)BC

    其中,\rho_1,\rho_2为输出平面的两点,而A_{x,y},B,C为复杂积分带来的几何系数。

    根据光谱相干度定义,可以得出相干涡旋位置所满足的方程组:

\begin{array}{c}      Re[\mu(\rho_1,\rho_2,z)]=0  \\      Im[\mu(\rho_1,\rho_2,z)]=0     \end{array},

    \mu定义为相干度\frac{W(\rho_1,\rho_2,z)}{[I(\rho_1,z)I(\rho_2,z)]^{1/2}}.

        ————Journal of Optoelectronics . Laser Vol.27 No.7 July 2016

拓扑荷为3时的部分相干 LG 光束分别在(a)源处、自由空间传输中(b)z=500m 和(c)z=1000m 处、大气湍流传输中(d)z=500m 和(e) z=1000m 处光谱相干度的位相图
拓扑荷为5时的部分相干 LG 光束分别在大气湍流传输中(d) z=500m 和(e) z=1000m 处光谱相干度的位相图
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容