待学知识点

因子图(factor graph)

  Factor Graph 是概率图的一种,概率图有很多种,最常见的就是Bayesian Network (贝叶斯网络)和Markov Random Fields(马尔可夫随机场)。

  在概率图中,求某个变量的边缘分布是常见的问题。这问题有很多求解方法,其中之一就是可以把Bayesian Network和Markov Random Fields 转换成Facor Graph,然后用sum-product算法求解。基于Factor Graph可以用sum-product算法可以高效的求各个变量的边缘分布。

更详细的理解

  将一个具有多变量的全局函数因子分解,得到几个局部函数的乘积,以此为基础得到的一个双向图叫做因子图。

  所谓factor graph(因子图),就是对函数因子分解的表示图,一般内含两种节点,变量节点和函数节点。我们知道,一个全局函数能够分解为多个局部函数的积,因式分解就行了,这些局部函数和对应的变量就能体现在因子图上。

  在概率论及其应用中, 因子图是一个在贝叶斯推理中得到广泛应用的模型。

sum-product算法

  在因子图中,所有顶点,要不然就是变量节点不然就是函数节点,边线表示他们之间的函数关系。在讲解朴素贝叶斯和马尔可夫的时候,我们变线上标注的符 号,也就是Psi函数表示符号,就是表示我们模型中x和y的联系函数。Psi函数在不同的环境下有着不同的含义,因此解释这种东西总是比较棘手的。在动态模型里面,或者任何其他的图概率模型,都是可以用因子图表示的,而Psi在这里,表征的通常都是概率或者条件概率。 因子图和Psi函数表示法,在machine learning的paper中是比较常用的。(参考资料:http://www.cnblogs.com/549294286/archive/2013/06/06/3121454.html)

参考文章:因子图

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容

  • 该文章为转载文章,作者简介:汪剑,现在在出门问问负责推荐与个性化。曾在微软雅虎工作,从事过搜索和推荐相关工作。 T...
    名字真的不重要阅读 5,260评论 0 3
  • 多道尚知/整理 事实证明,在SAT考试中,数学是大部分中国学生的优势,这个优势应该保持住。 在实考中,数学如果能够...
    与无大老师同道前行阅读 1,140评论 1 1
  • 音乐灵动,跳跃活泼,音乐流淌,像是夏日山林里流淌的涓涓细流,清澈明亮,治愈人心。 音乐如细雨地下,先是缓慢,后...
    2班王圯涵11号阅读 183评论 0 0
  • (一)李给的故事 李给是抱着极度兴奋的心情踏上火车的,那天火热的太阳和发馊的车厢的景象至今记得清楚。谢过...
    盒子君Lo阅读 479评论 0 3
  • 文|中药味的吧啦啦 列车缓缓的行驶在夜幕中,林夏躺在硬卧上翻来覆去,车厢里一直有人在叽叽喳喳的说些故事,那些失望的...
    河恩呐阅读 611评论 4 9