贝叶斯定理

贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。其中P(A|B)是在B发生的情况下A发生的可能性。

比如这样一个问题:你喜欢上一个人的概率,你觉得一个人某方面好的概率,你喜欢上一个人然后觉得这个人某方面好的概率,你觉得一个人某方面好然后喜欢上这个人的概率,这4个之前有什么关系呢?

用数学语言表达:P(喜欢上一个人), P(觉得一个人某方面好), P(觉得这个人某方面好|喜欢上一个人) 和 P(喜欢上这个人|觉得一个人某方面好) 有什么关系呢?

我们生活中遇到的很多概率其实都是条件概率/后验概率(在某一条件下成立的事件的概率),贝叶斯定理揭示了不同的条件概率之间的关系。

同样的,贝叶斯定理也可以用于投资决策分析。在已知相关项目B的资料,而缺乏论证项目A的直接资料时,通过对B项目的有关状态及发生概率分析推导A项目的状态及发生概率。如果我们用数学语言描绘,即当已知事件B的概率P(B)和事件B已发生条件下事件A的概率P(A│B),则可运用贝叶斯定理计算出在事件A发生条件下事件B的概率P(B│A)。

概率与统计学看起来虽然枯燥无比,但是与生活结合时会产生奇妙的火花,学会运用基本的数学规律指导投资必将能使自己的投资视角更上一层楼。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,743评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,296评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,285评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,485评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,581评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,821评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,960评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,719评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,186评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,516评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,650评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,329评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,936评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,757评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,991评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,370评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,527评论 2 349

推荐阅读更多精彩内容

  • 【2017.6.27】 【台版序言 幕布】 不会保存导图形式的。后来发现是因为我用的免费软件。用用幕布看看好不好再...
    燕传熙阅读 526评论 0 1
  • 介绍 贝叶斯法则 贝叶斯定理是用来做什么的?简单说,概率预测:某个条件下,一件事发生的概率是多大? wiki 把为...
    andyJi阅读 1,958评论 1 7
  • 奥卡姆剃刀 奥卡姆剃刀(Occam's Razor),是由14世纪逻辑学家、圣方济各会修士奥卡姆的威廉(Willi...
    刘雪峰LXF阅读 5,756评论 0 13
  • 贝叶斯定理在学概率论的时候学过,不过学完这么久很多人自然就忘了,我也不例外,也忘了。因为我知道今天的课程和贝叶斯定...
    CharmingDK阅读 1,125评论 0 3
  • 有一次,我和妈妈去动植物园游玩,我看见了一个很平凡的植物,它虽然平凡,但是它却深深吸引了我。它就是蒲公英。...
    王韵茹阅读 378评论 0 2