聊聊flink的BoundedOutOfOrdernessTimestampExtractor

本文主要研究一下flink的BoundedOutOfOrdernessTimestampExtractor

BoundedOutOfOrdernessTimestampExtractor

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/timestamps/BoundedOutOfOrdernessTimestampExtractor.java

/**
 * This is a {@link AssignerWithPeriodicWatermarks} used to emit Watermarks that lag behind the element with
 * the maximum timestamp (in event time) seen so far by a fixed amount of time, <code>t_late</code>. This can
 * help reduce the number of elements that are ignored due to lateness when computing the final result for a
 * given window, in the case where we know that elements arrive no later than <code>t_late</code> units of time
 * after the watermark that signals that the system event-time has advanced past their (event-time) timestamp.
 * */
public abstract class BoundedOutOfOrdernessTimestampExtractor<T> implements AssignerWithPeriodicWatermarks<T> {

    private static final long serialVersionUID = 1L;

    /** The current maximum timestamp seen so far. */
    private long currentMaxTimestamp;

    /** The timestamp of the last emitted watermark. */
    private long lastEmittedWatermark = Long.MIN_VALUE;

    /**
     * The (fixed) interval between the maximum seen timestamp seen in the records
     * and that of the watermark to be emitted.
     */
    private final long maxOutOfOrderness;

    public BoundedOutOfOrdernessTimestampExtractor(Time maxOutOfOrderness) {
        if (maxOutOfOrderness.toMilliseconds() < 0) {
            throw new RuntimeException("Tried to set the maximum allowed " +
                "lateness to " + maxOutOfOrderness + ". This parameter cannot be negative.");
        }
        this.maxOutOfOrderness = maxOutOfOrderness.toMilliseconds();
        this.currentMaxTimestamp = Long.MIN_VALUE + this.maxOutOfOrderness;
    }

    public long getMaxOutOfOrdernessInMillis() {
        return maxOutOfOrderness;
    }

    /**
     * Extracts the timestamp from the given element.
     *
     * @param element The element that the timestamp is extracted from.
     * @return The new timestamp.
     */
    public abstract long extractTimestamp(T element);

    @Override
    public final Watermark getCurrentWatermark() {
        // this guarantees that the watermark never goes backwards.
        long potentialWM = currentMaxTimestamp - maxOutOfOrderness;
        if (potentialWM >= lastEmittedWatermark) {
            lastEmittedWatermark = potentialWM;
        }
        return new Watermark(lastEmittedWatermark);
    }

    @Override
    public final long extractTimestamp(T element, long previousElementTimestamp) {
        long timestamp = extractTimestamp(element);
        if (timestamp > currentMaxTimestamp) {
            currentMaxTimestamp = timestamp;
        }
        return timestamp;
    }
}
  • BoundedOutOfOrdernessTimestampExtractor抽象类实现AssignerWithPeriodicWatermarks接口的extractTimestamp及getCurrentWatermark方法,同时声明抽象方法extractAscendingTimestamp供子类实现
  • BoundedOutOfOrdernessTimestampExtractor的构造器接收maxOutOfOrderness参数用于指定element允许滞后(t-t_w,t为element的eventTime,t_w为前一次watermark的时间)的最大时间,在计算窗口数据时,如果超过该值则会被忽略
  • BoundedOutOfOrdernessTimestampExtractor的extractTimestamp方法会调用子类的extractTimestamp方法抽取时间,如果该时间大于currentMaxTimestamp,则更新currentMaxTimestamp;getCurrentWatermark先计算potentialWM,如果potentialWM大于等于lastEmittedWatermark则更新lastEmittedWatermark(currentMaxTimestamp - lastEmittedWatermark >= maxOutOfOrderness,这里表示lastEmittedWatermark太小了所以差值超过了maxOutOfOrderness,因而调大lastEmittedWatermark),最后返回Watermark(lastEmittedWatermark)

实例

    public static void main(String[] args) throws Exception {

        final int popThreshold = 20; // threshold for popular places

        // set up streaming execution environment
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        env.getConfig().setAutoWatermarkInterval(1000);

        // configure the Kafka consumer
        Properties kafkaProps = new Properties();
        kafkaProps.setProperty("zookeeper.connect", LOCAL_ZOOKEEPER_HOST);
        kafkaProps.setProperty("bootstrap.servers", LOCAL_KAFKA_BROKER);
        kafkaProps.setProperty("group.id", RIDE_SPEED_GROUP);
        // always read the Kafka topic from the start
        kafkaProps.setProperty("auto.offset.reset", "earliest");

        // create a Kafka consumer
        FlinkKafkaConsumer011<TaxiRide> consumer = new FlinkKafkaConsumer011<>(
                "cleansedRides",
                new TaxiRideSchema(),
                kafkaProps);
        // assign a timestamp extractor to the consumer
        consumer.assignTimestampsAndWatermarks(new TaxiRideTSExtractor());

        // create a TaxiRide data stream
        DataStream<TaxiRide> rides = env.addSource(consumer);

        // find popular places
        DataStream<Tuple5<Float, Float, Long, Boolean, Integer>> popularPlaces = rides
                // match ride to grid cell and event type (start or end)
                .map(new GridCellMatcher())
                // partition by cell id and event type
                .keyBy(0, 1)
                // build sliding window
                .timeWindow(Time.minutes(15), Time.minutes(5))
                // count ride events in window
                .apply(new RideCounter())
                // filter by popularity threshold
                .filter((Tuple4<Integer, Long, Boolean, Integer> count) -> (count.f3 >= popThreshold))
                // map grid cell to coordinates
                .map(new GridToCoordinates());

        popularPlaces.print();

        // execute the transformation pipeline
        env.execute("Popular Places from Kafka");
    }

    /**
     * Assigns timestamps to TaxiRide records.
     * Watermarks are a fixed time interval behind the max timestamp and are periodically emitted.
     */
    public static class TaxiRideTSExtractor extends BoundedOutOfOrdernessTimestampExtractor<TaxiRide> {

        public TaxiRideTSExtractor() {
            super(Time.seconds(MAX_EVENT_DELAY));
        }

        @Override
        public long extractTimestamp(TaxiRide ride) {
            if (ride.isStart) {
                return ride.startTime.getMillis();
            }
            else {
                return ride.endTime.getMillis();
            }
        }
    }
  • 该实例使用的是AssignerWithPeriodicWatermarks,通过env.getConfig().setAutoWatermarkInterval(1000)设置了watermark的时间间隔,通过assignTimestampsAndWatermarks指定了AssignerWithPeriodicWatermarks为TaxiRideTSExtractor,它继承了BoundedOutOfOrdernessTimestampExtractor抽象类

小结

  • flink为了方便开发提供了几个内置的Pre-defined Timestamp Extractors / Watermark Emitters,其中一个就是BoundedOutOfOrdernessTimestampExtractor
  • BoundedOutOfOrdernessTimestampExtractor抽象类实现AssignerWithPeriodicWatermarks接口的extractTimestamp及getCurrentWatermark方法,同时声明抽象方法extractAscendingTimestamp供子类实现
  • BoundedOutOfOrdernessTimestampExtractor的构造器接收maxOutOfOrderness参数用于指定element允许滞后(t-t_w,t为element的eventTime,t_w为前一次watermark的时间)的最大时间,在计算窗口数据时,如果超过该值则会被忽略

doc

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,607评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,239评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,960评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,750评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,764评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,604评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,347评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,253评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,702评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,893评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,015评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,734评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,352评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,934评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,052评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,216评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,969评论 2 355

推荐阅读更多精彩内容