机器学习第1天:线性回归(代码篇)

这篇文章中,我们要通过鸢尾花的花瓣长度预测花瓣宽度

  • 环境:Python3.6.5
  • 编译器:jupyter notebook
  • 代码|数据:微信公众号(明天依旧可好)中回复:第1天

来自专题:【机器学习100天】

一、具体实现步骤

1. 导入Iris鸢尾花数据集

Iris鸢尾花数据集共有150条记录,分别是:

  • 50条山鸢尾 (Iris-setosa)
  • 50条变色鸢尾(Iris-versicolor)
  • 50条维吉尼亚鸢尾(Iris-virginica)
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"  
names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class']  
dataset = pd.read_csv(url, names=names)

2. 提取花瓣数据

下面我们提取数据集中花瓣宽度花瓣长度数据,将花瓣数据分为训练数据测试数据,训练数据用于训练线性回归模型,测试数据用于检测我们的模型的准确率。

最终我们要达到的效果是:输入花瓣宽度,通过模型预测花瓣宽度。

X = dataset["花瓣-length"]
Y = dataset["花瓣-width"]
X = X.reshape(len(X),1)
Y = Y.reshape(len(Y),1)

3. 拆分数据

将数据集拆分数据集成训练集、测试集

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)

4. 训练模型

这里我们需要将我们的训练数据喂给模型进行训练。

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor = regressor.fit(X_train, Y_train)

二、可视化结果展示

1. 训练集

将训练集中每一朵花的花瓣数据与线性回归模型预测的结果放到同一张统计图中。

import matplotlib.pyplot as plt

plt.scatter(X_train, Y_train, color='red')
plt.plot(X_train, regressor.predict(X_train), color='green')
plt.xlabel("Iris-length") 
plt.ylabel("Iris-width") 
plt.title("This is train dataset-kzb")
plt.show()

红色的点是训练数据集中的花瓣数据,我们不难看出花瓣长度与宽度是一个线性关系,绿色的线是我们模型拟合的结果。


在这里插入图片描述

2. 测试集

将测试集中每一朵花的花瓣数据与线性回归模型预测的结果放到同一张统计图中。

plt.scatter(X_test, Y_test, color='blue')
plt.plot(X_train, regressor.predict(X_train), color='green')
plt.xlabel("Iris-length") 
plt.ylabel("Iris-width") 
plt.title("This is test dataset-kzb")
plt.show()

绿色的点是测试数据集中的花瓣数据,我们可以看出这部分数据也是符合线性关系的,随着集的增大,线性关系会更加明显。


在这里插入图片描述

三、相关知识点讲解

1. train_test_split()函数

train_test_split():将数据集划分为测试集与训练集。

  • X:所要划分的整体数据的特征集;
  • Y:所要划分的整体数据的结果;
  • test_size:测试集数据量在整体数据量中的占比(可以理解为X_test与X的比值);
  • random_state:①若不填或者填0,每次生成的数据都是随机,可能不一样。②若为整数,每次生成的数据都相同;
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)

2. LinearRegression()函数

sklearn.linear_model包实现了广义线性模型,包括线性回归、Ridge回归、Bayesian回归等。LinearRegression是其中较为简单的线性回归模型。

解释一下什么是回归:回归最简单的定义是,给出一个点集D,用一个函数去拟合这个点集,并且使得点集与拟合函数间的误差最小,如果这个函数曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归。

3. 散点图与折线统计图的绘制

plt.scatter():绘画出数据的散点图
plt.plot():绘画出依据模型(LinearRegression的线性回归模型)生成的直线

更详细的介绍可以参考:【Matplotlib可视化系列教程】


【机器学习100天目录】
【机器学习第2天:线性回归(理论篇)】
【机器学习第3天:预测汽车的燃油效率】
【机器学习第4天:预测1立方米混凝土抗压强度】
【机器学习第5天:逻辑回归】

如有错误欢迎指教,有问题的也可以加入QQ群(1149530473)向我提问,关注微信公众号(明天依旧可好)和我同步。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355