一些经典 CNN

在计算机视觉的发展过程中,出现了很多经典的卷积神经网络模型,它们对后来的研究有很大影响,这篇文章简要谈谈 LeNet-5、AlexNet 和 VGGNet.

LeNet-5

LeNet-5 是由 LeCun 在 1998 年的一篇论文中提出的,与今天的一些神经网络相比,LeNet-5 是一个小型神经网络,它只有大约 60000 个参数,而今天经常会有包含千万到亿量级参数的神经网络,我们先来看一下 LeNet-5 的模型:

image

如图所示,输入是一张维度为 (32, 32, 1) 的图片,在这个例子中该图片是一张手写体数字的灰度图片,内容为数字 7,由于这是一张灰度图,因此通道数为 1,下面依次对该网络每层进行说明:

  • 第一层:
    • 6 个大小为 5 × 5 的过滤器,Padding = 1,Stride = 1. 输出维度为 (28, 28, 6) 的图片。
    • 均值池化层,过滤器大小为 2 × 2,Stride = 2. 输出维度为 (14, 14, 6) 的图片。
  • 第二层:
    • 6 个大小为 5 × 5 的过滤器,Padding = 1,Stride = 1. 输出维度为 (10, 10, 6) 的图片。
    • 均值池化层,过滤器大小为 2 × 2,Stride = 2. 输出维度为 (5, 5, 6) 的图片。
  • 第三层:全连接层,共 120 个结点
  • 第四层:全连接层,共 84 个结点
  • 第五层:输出层,输出预测值

Note: 由于池化层并不包含任何参数,因此将其与前一个卷积层共算作一层。

这个网络可以完成手写体数字识别的任务,输入一张大小为 32 × 32 的灰度图,最终输出对图中数字的预测,其中池化层用的是均值池化,而目前更常用的最大池化,另外,现在输出层通常使用 softmax 函数,而当时使用的是另一种函数。

该网络中用到结构在现今仍非常常用,即先使用一层或几层卷积层,再使用一层池化层,然后再使用一层或几层卷积层,再使用一层池化层,最后再使用几层全连接层,最后输出结果。这种结构方式在今天也非常常见。

AlexNet

与 LeNet-5 只有大约 60000 个参数不同,AlexNet 有大约 6 千万个参数,不过这二者拥有很相似的结构,只是 AlexNet 拥有更多的隐藏神经元,在更大的数据上训练,这使得它有更好的性能,它的结构如下

image
  • 第一层:
    • 96 个大小为 11 × 11 的过滤器,Padding = 1,Stride = 4. 输出维度为 (55, 55, 96).
    • 最大池化层,过滤器大小为 3 × 3,Stride = 2. 输出维度为 (27, 27, 96).
  • 第二层:
    • 256 个大小为 5 × 5 的过滤器,Padding = same,Stride = 1. 输出维度为 (27, 27, 256).
    • 最大池化层,过滤器大小为 3 × 3,Stride = 2. 输出维度为 (13, 13, 256).
  • 第三层:384 个大小为 3 × 3 的过滤器,Padding = same,Stride = 1. 输出维度为 (13, 13, 384).
  • 第四层:384 个大小为 3 × 3 的过滤器,Padding = same,Stride = 1. 输出维度为 (13, 13, 384).
  • 第五层:
    • 256 个大小为 3 × 3 的过滤器,Padding = same,Stride = 1. 输出维度为 (13, 13, 256).
    • 最大池化层:过滤器大小为 3 × 3,Stride = 2. 输出维度为 (6, 6, 256).
  • 第六层:全连接层,共 4096 个结点
  • 第七层:全连接层,共 4096 个结点
  • 第八层:输出层,使用 softmax 输出预测类别

另一个与 LeNet-5 不同之处是,AlexNet 的激活函数使用了 ReLU,而非 LeNet-5 使用的 sigmoid 或者 tanh,这也使得其性能更好一些。

实际上上面列出的结构是原始 AlexNet 的简化,原始的 AlexNet 中还有局部响应归一层,但后来并不太常用,因此这里做了简化。

VGG-16

VGG-16 中的 16 是指该网络中有 16 层带有权重的层,这是一个很大的神经网络,这导致该网络中的参数多达 1 亿 3 千 8 百万个。但是 VGG 的结构非常统一,该网络中的所有卷积层的过滤器大小都是 3 × 3,Stride 都是 1,Padding 都是 same,而池化层过滤器的大小全为 2 × 2,Stride 全为 2。结构方面,总是现有几层卷积层,然后是池化层,再来几层卷积层,再来一个池化层。由于该网络层数很多,结构图稍微简化了一些:

image

其中,

  • [CONV 64] × 2 是指两层各有 64 个过滤器的卷积层
  • POOL 指池化层
  • FC 指全连接层

可以看到,虽然 VGG-16 是一个比较大的网络,但是由于其结构统一,因此受到了许多研究者的青睐,另外还有 VGG-19,指拥有 19 层带有权重的层的 VGG,但由于其性能与 VGG-16 差不多,因此大多数人还是选择用 VGG-16。

以上是对三个经典卷积神经网络的简单介绍,文末附上 AlexNet 和 VGG 的相关论文。

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

[Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容

  • 经典网络(Classic networks) 这节课,我们来学习几个经典的神经网络结构,分别是LeNet-5、Al...
    极客Array阅读 2,279评论 1 15
  • 对与错是考虑问题的重要因素,但不是唯一因素,一个事情的抉择需要有很多方面的因素支撑,而经过思考后的快刀斩乱麻也不失...
    老杨111阅读 297评论 0 0
  • 2017年,8月4号星期五 阴 昨天我的亲子日记也写一百天啦。[鼓掌]时间真快,想想当初,以一百天为目标的...
    厦小薛智一爸爸阅读 223评论 2 3
  • 人生一场 空杯以对 所有的故事没有什么人是独立存在的 包括眼前这个完美的世界 生活总是两难,再多执着 却也学不会接...
    张仟宸妃阅读 150评论 0 3
  • 在一起就是无休止的争吵,分开又是折磨人的思念。。。。 又一部感天动地的人鬼情未了。。。那哀怨的歌声把死神都唱哭了,...
    风筝2017阅读 647评论 0 0