深入学习二叉树(三) 霍夫曼树

1 前言

霍夫曼树是二叉树的一种特殊形式,又称为最优二叉树,其主要作用在于数据压缩和编码长度的优化。

2 重要概念

2.1 路径和路径长度

在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。

图2.1

图2.1所示二叉树结点A到结点D的路径长度为2,结点A到达结点C的路径长度为1。

2.2 结点的权及带权路径长度

若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
图2.2展示了一棵带权的二叉树


图2.2

2.3 树的带权路径长度

树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。
图2.2所示二叉树的WPL:
WPL = 6 * 2 + 3 * 2 + 8 * 2 = 34;

3 霍夫曼树

3.1 定义

给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为霍夫曼树(Huffman Tree)。
如图3.1所示两棵二叉树


图3.1

叶子结点为A、B、C、D,对应权值分别为7、5、2、4。
3.1.a树的WPL = 7 * 2 + 5 * 2 + 2 * 2 + 4 * 2 = 36
3.1.b树的WPL = 7 * 1 + 5 * 2 + 2 * 3 + 4 * 3 = 35
由ABCD构成叶子结点的二叉树形态有许多种,但是WPL最小的树只有3.1.b所示的形态。则3.1.b树为一棵霍夫曼树。

3.2 构造霍夫曼树

构造霍夫曼树主要运用于编码,称为霍夫曼编码。现考虑使用3.1中ABCD结点以及对应的权值构成如下长度编码。
AACBCAADDBBADDAABB。
编码规则:从根节点出发,向左标记为0,向右标记为1。
采用上述编码规则,将图3.1编码为图3.2所示:

图3.2

构造过程:
3.1.a所示二叉树称为等长编码,由于共有4个结点,故需要2位编码来表示,编码结果为:

结点 编码
A 00
B 01
C 10
D 11

则AACBCAADDBBADDAABB对应编码为:
00 00 10 01 10 00 00 11 11 01 01 00 11 11 00 00 01 01
长度为36。
3.1.b构造过程如下:
1)选择结点权值最小的两个结点构成一棵二叉树如图3.3:


图3.3

2)则现在可以看作由T1,A,B构造霍夫曼树,继续执行步骤1。
选则B和T1构成一棵二叉树如图3.4:


图3.4

3)现只有T2和A两个结点,继续执行步骤1。
选择A和T2构成一棵二叉树如图3.5:


图3.5

经过上述步骤则可以构造完一棵霍夫曼树。通过观察可以发现,霍夫曼树中权值越大的结点距离根结点越近。
按照图3.5霍夫曼树编码结果:

结点 编码
A 0
B 10
C 110
D 111

则AACBCAADDBBADDAABB对应编码为:
0 0 110 10 110 0 0 111 111 10 10 0 111 111 0 0 10 10
编码长度为35。
由此可见,采用二叉树可以适当降低编码长度,尤其是在编码长度较长,且权值分布不均匀时,采用霍夫曼编码可以大大缩短编码长度。

3.3 代码实现

#include <iostream>
#include <stdlib.h>
using namespace std;
const int MaxValue = 10000;//初始设定的权值最大值
const int MaxBit = 4;//初始设定的最大编码位数
const int MaxN = 10;//初始设定的最大结点个数
struct HaffNode//哈夫曼树的结点结构
{
    int weight;//权值
    int flag;//标记
    int parent;//双亲结点下标
    int leftChild;//左孩子下标
    int rightChild;//右孩子下标
};
struct Code//存放哈夫曼编码的数据元素结构
{
    int bit[MaxBit];//数组
    int start;//编码的起始下标
    int weight;//字符的权值
};
void Haffman(int weight[], int n, HaffNode haffTree[])
//建立叶结点个数为n权值为weight的哈夫曼树haffTree
{
    int j, m1, m2, x1, x2;
    //哈夫曼树haffTree初始化。n个叶结点的哈夫曼树共有2n-1个结点
    for (int i = 0; i<2 * n - 1; i++)
    {
        if (i<n)
            haffTree[i].weight = weight[i];
        else
            haffTree[i].weight = 0;
        //注意这里没打else那{},故无论是n个叶子节点还是n-1个非叶子节点都会进行下面4步的初始化
        haffTree[i].parent = 0;
        haffTree[i].flag = 0;
        haffTree[i].leftChild = -1;
        haffTree[i].rightChild = -1;
    }
    //构造哈夫曼树haffTree的n-1个非叶结点
    for (int i = 0; i<n - 1; i++)
    {
        m1 = m2 = MaxValue;//Maxvalue=10000;(就是一个相当大的数)
        x1 = x2 = 0;//x1、x2是用来保存最小的两个值在数组对应的下标
 
        for (j = 0; j<n + i; j++)//循环找出所有权重中,最小的二个值--morgan
        {
            if (haffTree[j].weight<m1&&haffTree[j].flag == 0)
            {
                m2 = m1;
                x2 = x1;
                m1 = haffTree[j].weight;
                x1 = j;
            }
            else if(haffTree[j].weight<m2&&haffTree[j].flag == 0)
            {
                m2 = haffTree[j].weight;
                x2 = j;
            }
        }
        //将找出的两棵权值最小的子树合并为一棵子树
        haffTree[x1].parent = n + i;
        haffTree[x2].parent = n + i;
        haffTree[x1].flag = 1;
        haffTree[x2].flag = 1;
        haffTree[n + i].weight = haffTree[x1].weight + haffTree[x2].weight;
        haffTree[n + i].leftChild = x1;
        haffTree[n + i].rightChild = x2;
    }
}
void HaffmanCode(HaffNode haffTree[], int n, Code haffCode[])
//由n个结点的哈夫曼树haffTree构造哈夫曼编码haffCode
{
    Code *cd = new Code;
    int child, parent;
    //求n个叶结点的哈夫曼编码
    for (int i = 0; i<n; i++)
    {
        //cd->start=n-1;//不等长编码的最后一位为n-1,
        cd->start = 0;//,----修改从0开始计数--morgan
        cd->weight = haffTree[i].weight;//取得编码对应权值的字符
        child = i;
        parent = haffTree[child].parent;
        //由叶结点向上直到根结点
        while (parent != 0)
        {
            if (haffTree[parent].leftChild == child)
                cd->bit[cd->start] = 0;//左孩子结点编码0
            else
                cd->bit[cd->start] = 1;//右孩子结点编码1
                                      //cd->start--;
            cd->start++;//改成编码自增--morgan
            child = parent;
            parent = haffTree[child].parent;
        }
        //保存叶结点的编码和不等长编码的起始位
        //for(intj=cd->start+1;j<n;j++)
        for (int j = cd->start - 1; j >= 0; j--)//重新修改编码,从根节点开始计数--morgan
            haffCode[i].bit[cd->start - j - 1] = cd->bit[j];
 
        haffCode[i].start = cd->start;
        haffCode[i].weight = cd->weight;//保存编码对应的权值
    }
}
int main()
{
    int i, j, n = 4, m = 0;
    int weight[] = { 2,4,5,7 };
    HaffNode*myHaffTree = new HaffNode[2 * n - 1];
    Code*myHaffCode = new Code[n];
    if (n>MaxN)
    {
        cout << "定义的n越界,修改MaxN!" << endl;
        exit(0);
    }
    Haffman(weight, n, myHaffTree);
    HaffmanCode(myHaffTree, n, myHaffCode);
    //输出每个叶结点的哈夫曼编码
    for (i = 0; i<n; i++)
    {
        cout << "Weight=" << myHaffCode[i].weight << "  Code=";
        //for(j=myHaffCode[i].start+1;j<n;j++)
        for (j = 0; j<myHaffCode[i].start; j++)
            cout << myHaffCode[i].bit[j];
        m = m + myHaffCode[i].weight*myHaffCode[i].start;
        cout << endl;
    }
    cout << "huffman's WPL is:";
    cout << m;
    cout << endl;
    return 0;
}

4 结语

本文主要介绍了霍夫曼树的实际意义和如何构造一棵二叉树。学习霍夫曼树主要是掌握霍夫曼树的构造思想以及构造过程,至于代码实现则是次要的,而且霍夫曼编码实现过程中运用到了贪心算法。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,340评论 5 467
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,762评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,329评论 0 329
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,678评论 1 270
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,583评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,995评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,493评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,145评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,293评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,250评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,267评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,973评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,556评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,648评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,873评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,257评论 2 345
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,809评论 2 339

推荐阅读更多精彩内容

  • 四、树与二叉树 1. 二叉树的顺序存储结构 二叉树的顺序存储就是用数组存储二叉树。二叉树的每个结点在顺序存储中都有...
    MinoyJet阅读 1,490评论 0 7
  • 定义指针变量,如果不赋给它地址,系统会随机给它分配一个地址。 C++标准库 C++ Standard Librar...
    纵我不往矣阅读 283评论 0 1
  • 普通树与二叉树的相互转化及哈夫曼树的了解 二叉树与普通树的转化 二叉树的种种特性使得它更便于处理,如果能将普通树转...
    sunhaiyu阅读 1,517评论 0 3
  • 概念 树是什么 树(Tree)是n(n>=0)个结点的有限集。 n = 0的树是空树。 在任意一棵非空树中: 有且...
    刚刚悟道阅读 5,018评论 1 16
  • 二叉树 二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(...
    n油炸小朋友阅读 765评论 0 1