云计算的兄弟-雾计算和流计算

编辑:于占胜     组别:研0组

【嵌牛导读】近几年,越来越多的企业开始进入云产业,出现了大量应用解决方案,云应用的成功案例逐渐丰富,用户了解和认可程度不断提高,云计算产业发展迎来了“黄金机遇期”。云计算无疑是当下的热门词汇,而与之极其相似的雾计算、流计算也随着而来。

【嵌牛鼻子】云计算,雾计算,流计算简单介绍。

【嵌牛提问】云计算,雾计算,流计算那么这三个词究竟有何区别,代表了什么意思?

【嵌牛正文】

       云计算:云计算大家都不陌生,虽然很多人并不真正知道云计算技术的含义,但是都在各种媒体、新闻中听到过。云是网络、互联网的一种比喻说法,云计算是基于互联网的相关服务的增加、使用和交付模式。2006年8月9日,Google首席执行官埃里克·施密特(Eric Schmidt)在搜索引擎大会(SES San Jose 2006)首次提出“云计算”(Cloud Computing)的概念,经过了几年的探索期,直到2011年才让人们所熟知。对云计算的定义有多种说法。对于到底什么是云计算,至少可以找到100种解释。 咨询公司埃森哲(Accenture)给出了一种实用、简洁的定义:第三方提供商通过网络动态提供及配置IT功能(硬件、软件或服务)。现在正在流行的“云计算”,是把大量数据放到“云”里去计算或存储。这样,就解决了目前电脑或手机存储量不够,或者是运算速度不够快的问题,当然也带来了其他很多好处。不难看出,云计算并不要求计算机性能多么好,只要数量够多,网络带宽够大就可以,这样就能得到超高速的计算能力,相当于用数千台计算机同时做同一件事,这样彻底将人们从追求巨型机设计中解脱出来,数据中心也不需要频繁地更换性能差的服务器和计算机,所以当云计算被推出来的时候,受到了技术人员的热捧。

        雾计算:在终端和数据中心之间再加一层,叫网络边缘层,如再加一个带有存储器的小服务器或路由器,把一些并不需要放到“云”的数据在这一层直接处理和存储,可大大减少“云”的压力,提高了效率,也提升了传输速率,减低了时延。这个方法叫做“雾计算”。 和云计算相比,雾计算就低调得多了,而且雾计算推出的稍晚些,是由思科创造的。雾计算和云计算一样,十分形象。不过云高高在上,遥不可及。雾却现实可及,贴近地面。雾计算是由性能较弱、更为分散的各类功能计算机组成的。雾计算没有强力的计算能力,只有一些弱的、零散的计算设备。雾计算介于云计算和个人计算之间的,是半虚拟化的服务计算架构模型。和云计算相比,雾计算更接地气。绝大部分的中小型数据中心部署云计算是非常困难的,而部署雾计算却很容易。云计算通过物理上在一起的设备形成强大的计算能力,而雾计算则是将物理上分散的计算机联合起来,形成较弱的计算能力,不过这样的计算能力对于中小型的数据中心,完全够用了。雾计算将数据、数据处理和应用程序集中在网络边缘的设备中,而不像云计算那样将它们几乎全部保存在云中。如果说云计算是新一代的集中式计算,雾计算就是新一代的分布式计算,符合互联网“去中心化”特征。

       流计算:和前两个相比,流计算知道的人比较少,这是蓝色巨人IBM提出的计算技术。IBM有一套完整的SystemS计算架构,通过流技术,可以对流形式的数据进行适时的分析。流形式的数据可源自结构化数据源或非结构化数据源,可能包含各种数字信号,针对流数据的实时分析允许组织实时响应市场警报或事件。流计算可以通过过滤海量数据并识别丰富的高价值信息,从而支持更灵活且更敏捷的业务流程,实时关联和汇总支持数据中心更快地做出响应。流计算其实是一种针对特定数据的一种计算方法,其对针对特定的数据,而不关心计算的设备是聚集在一起的还是分离的,也不管计算设备性能如何,是一种非结构性数据的计算方法。在传统的数据处理流程中,总是先收集数据,然后将数据放到数据库中,人们需要的时候通过数据库对做询问,得到答案。显然这些数据并不是实时的,再去查询的时候,得到的数据都是过期的,如果基于这样的数据进行分析,得到的结论很可能是错的。显然流计算可以很好地解决这方面的问题。不难发现,流计算与云计算、雾计算有着明显的区别,适用于特定数据处理场合,并不适用于所有的数据中心应用。

        不管是云计算、雾计算,还是流计算,都是一种新的数据计算方法,技术都是源自行业巨头企业之手。云计算”、“雾计算”相继出现在计算机技术的字典里。是不是我们接下来还可以期待“雪计算”、“彩虹计算”、“冰雹计算”,甚至“暴风计算”的出现呢?

 

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 195,898评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,401评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,058评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,539评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,382评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,319评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,706评论 3 386
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,370评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,664评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,715评论 2 312
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,476评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,326评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,730评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,003评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,275评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,683评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,877评论 2 335

推荐阅读更多精彩内容