不只是线性回归(2):多重共线性与正则化

Intro

线性回归(Linear Regression)是机器学习的基本方式,但为了提升其性能,人们发明了无数优化方式。这个“不只是线性回归”系列就是为了记录我在日常的学习中发现的,不只是简单的线性回归的算法、优化方式、数学原理等。

2. 多重共线性(Multicollinearity)

2.1 什么是多重共线性?

多重共线性,是指特征之间存在一组或多组线性关系。会导致训练出的模型失真。例如著名的Boston Housing数据集中,'INDUS', 'RAD', 'TAX'几个特征之间就存在严重的多重共线性(亲测)。

2.2 如何发现多重共线性?

判断特征间是否存在多重共线性貌似有N种方法,我一般就使用最直接的方式:看相关系数。计算两个特征的相关系数及P值,如果相关系数大于0.7,且P值小于0.05的话,一般就可以认为这两个特征存在共线性。

举例来说,下图是Boston Housing数据集13个特征间的相关系数矩阵,可以看出其中存在共线性的特征是哪几个。

collinearity.png

图1:相关系数矩阵

在网上看到还有根据Tolerance(容忍度)和VIF(方差膨胀因子)的判断方式,原谅一天统计学都没有学过的我不想去深究了。

2.3 如何解决多重共线性?

简单粗暴的方式,当然是判断出并剔除这些特征中次要或可替代的那些,相当于减少特征间重复表达的信息。我相信一定有N种方式来做上述判断的实现,但追(zhi)求(xiang)简(tou)洁(lan)的我一般采用主成分分析(PCA)的方式。

除了feature engineering的方式,我们还可以采用下面要介绍的正则化方式。

3. 线性回归的正则化(regularization)

正则化听上去非常高端的样子,但其实简单的说,就是在原有的损失函数(cost function)后面加一个正则化项(regularizer),这个正则化项可以避免模型参数过于发散无法收敛,也可以避免过拟合的现象。下面介绍的两种正则化方法,分别用的是两种不同的正则化项:

  • L1范数:所有参数的绝对值之和,对应Lasso回归;
  • L2范数:所有参数的平方和,对应岭回归。

以上所说的参数都是不包括 theta0 的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,076评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,658评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,732评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,493评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,591评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,598评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,601评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,348评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,797评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,114评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,278评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,953评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,585评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,202评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,180评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,139评论 2 352

推荐阅读更多精彩内容