Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
一个平衡二叉树,找到两个节点共同的最小root,root可以是其中某一个节点。
分析BST性质,必然左<中<右。所以只有三种可能:
- 左<= root <=右 那么返回root
- root < 左<右,那么root.left就是新的root继续比较。
- 左< 右< root,那么root.right是新的root。
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null || p == null || q == null) return root;
int left = (p.val < q.val)? p.val:q.val;
int right = (p.val < q.val)? q.val:p.val;
if(root.val >= left && root.val <= right) return root;
if(root.val > right) return lowestCommonAncestor(root.left, p,q);
return lowestCommonAncestor(root.right,p,q);
}
}