使用 Gan 网络生成名人照片

生成式对抗网络(GANs)是深度学习中最热门的话题之一。生成式对抗网络是一类用于无监督学习算法的人工算法,由两个神经网络组成的系统实现

生成器

鉴别器

两个神经网络都在零和游戏框架中相互竞争。生成式对抗网络(GANs)是一组模型,他们基本上学习创建与其给出的输入数据类似的合成数据。

鉴别器的任务是确定给定图像是否看起来自然(即是来自数据集的图像)还是看起来它是人工创建的。生成器的任务是创建与原始数据分布类似的自然外观图像,这些图像看起来足够自然以欺骗鉴别器网络。首先给生成器一个随机噪声,使用它产生假图像,然后将这些假图像与原始图像一起发送到鉴别器。

鉴别模型的任务是确定给定图像看起来是自然的(来自数据集的图像)还是人工创建的。这基本上是一个二元分类器,它采用普通卷积神经网络(CNN)的形式。生成器的任务是创建与原始数据分布类似的自然外观图像。

生成器试图蒙骗鉴别器,而鉴别器试图不被生成器蒙骗。当模型通过交替优化训练时,两种方法都被改进到“假图像与数据集图像无”法区分的点。

生成对抗式网络的数学方程:

我们可以认为这个方程由两部分组成,第一部分是从原始数据分布中采样的数据,第二部分是从噪声数据分布中采样的数据。

第一部分

鉴别者总是希望最大化其图像分类的正确率。这里的图像是从原始数据分布中采样的,原始数据分布是真实数据本身。D(x)是显示图像是真实的概率,所以鉴别器总是想要最大化 D(x),因此 log(D(x))应该最大化并且在这一部分内容中必须最大化。

第二部分

'z'是随机噪声样本,G(z)是使用噪声样本生成的图像。这个术语的解释和之前很相似。生成器总是希望最大化鉴别器被生成的图像蒙骗的概率。这意味着,生成器想要最大化 D(G(z)),因此它应该最小化 1-D(G(z))也意味着(1-D(G(z)))最小化。

使用 GANs 生成名人图像

名人图片数据集:

CelebA 数据集是超过 200,000 个带注释的名人面部图像的集合。因为在这个博客中,我只是想生成面孔所以我没有考虑注释。

1)获取数据: 

我创建了 helper.py 文件,你可以通过该文件下载 CelebA 数据集图像。在运行此代码片段时,它将下载 CelebA 数据集。(源代码链接如下)。

2)预处理图像:

由于我仅在面部图像上工作,为获得良好的效果所以我将其调整到 28 * 28。我裁剪了图像中不包含图像部分的部分。

由于生成式对抗网络很难训练(你可以查看此链接,以了解为什么生成式对抗网络的训练如此困难?)

为了获得准确的结果,我们应该拥有一个良好的 GPU(4GB 或更高版本),通过运行此代码片段,你可以了解是否使用自己的 GPU 安装了 tensorflow。

3)模型输入和网络结构

我将图像的宽,高,channel 和噪声参数作为模型的输入,随后生成器也会使用它们生成假图像。

生成器结构:

在解卷积层之后,生成器结构具有致密层和全连接层(除输出层外每一层都有批量标准化,leaky ReLu 和 dropout)。生成器将随机噪声向量 z,之后把它重塑为 4D 形状并把它传递给一系列上采样层。每个上采样层都代表一个转置卷积运算,即反卷积运算。

所有转置卷积的深度从 1024 一直减少到 3,它表示 RGB 彩色图像。最后一层通过双曲正切(tanh)函数输出 28x28x3 张量。

鉴别器结构:

鉴别器的工作是识别哪个图像是真实的,哪个是假的。鉴别器也是具有批量归一化、lekeay Relu 的 4 层 CNN(输入层除外)。鉴别器接收输出图像(大小为 28 * 28 * 3)并对其进行卷积。最后,鉴别器使用 Logistic Sigmoid 函数显示用于表示图像是真或假的输出概率。

当鉴别器看到图像中的差异时,它将梯度信号发送到生成器,此信号从鉴别器流向生成器。

4)生成器损失和鉴别器损失: 

鉴别器从训练图像和生成器两者接收图像,因此在计算鉴别器的损失时,我们必须增加由于真实图像和假图像造成的损失。两个网络被同时训练,所以我们需要将生成器和鉴别器都进行优化。如果图像是真实的,我们希望从鉴别器输出接近 1 的概率,如果图像是假的,则输出接近 0 的概率。


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,185评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,652评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,524评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,339评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,387评论 6 391
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,287评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,130评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,985评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,420评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,617评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,779评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,477评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,088评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,716评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,857评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,876评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,700评论 2 354

推荐阅读更多精彩内容