相关性计算与可视化画

用途:

计算组间相关性,并进行可视化

1.一组数据,单个矩阵

使用示例:

Rscript corrplot.r correlation.format_data_rename/SampleID_correlation.format.txt COR/SampleID

输入数据示例:

image.png

代码

1,输出相关性矩阵,并用ggplot2画热图

args = commandArgs(T)
if (length(args) !=2){
    print("Rscript this R <infile> <pre_outfile>")
    q()
}
library(ggplot2)
library(reshape2)
library(pheatmap)

data <- read.table(args[1],header=T,sep="\t",stringsAsFactors=FALSE,row.names =1)
corr <- cor(data)
out <- data.frame(sample=rownames(corr),as.data.frame(corr))
write.table(out,paste(args[2],".correlation.txt",sep=""),row.names =F,col.names =T,quote =F,sep="\t")
corr_met <- melt(corr)
out <- data.frame(sample=rownames(corr_met),as.data.frame(corr_met))
write.table(out,paste(args[2],".correlation2.txt",sep=""),row.names =F,col.names =T,quote =F,sep="\t")
ggplot(corr_met,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE))
ggsave(paste(args[2],".correlation_heatmap.pdf",sep = ""),width = 5,height =5)

2,输出相关性矩阵,并用corrplot画热图

args = commandArgs(T)
if (length(args) !=2){
    print("Rscript this R <infile> <pre_outfile>")
    q()
}
library("corrplot")
library(reshape2)

data <- read.table(args[1],header=T,sep="\t",stringsAsFactors=FALSE,row.names =1)
corr <- cor(data)
out <- data.frame(sample=rownames(corr),as.data.frame(corr))
write.table(out,paste(args[2],".correlation.txt",sep=""),row.names =F,col.names =T,quote =F,sep="\t")
corr_met <- melt(corr)
out <- data.frame(sample=rownames(corr_met),as.data.frame(corr_met))
write.table(out,paste(args[2],".correlation2.txt",sep=""),row.names =F,col.names =T,quote =F,sep="\t")

pdf(paste(args[2],".correlation.pdf",sep = ""),width = 6,height = 6)
color<-colorRampPalette(c("blue", "red"))(200)
corrplot(corr=corr,order = "AOE",type="upper",tl.pos = "d",col=color)
#如果想画饼图用以下代码
#corrplot(corr=corr,order = "AOE",type="upper",tl.pos = "d",col=color,method = "pie")
corrplot(corr = corr,add=TRUE, type="lower", method="number",order="AOE",diag=FALSE,tl.pos="n", cl.pos="n")
dev.off()

结果示例

*.correlation2.txt:


image.png

*.correlation.txt:


image.png

ggplot可视化:


image.png

corrplot可视化:


image.png
image.png

2.多组数据,多个矩阵组合

1)组合方式1

ggplot绘制的结果进行组合:

library(ggplot2)
library(reshape2)
library(pheatmap)
library(ggpubr)
data = read.table("/*/COR//Pt17.correlation2.txt",header = T)
p1 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt17.correlation2.txt",header = T)
p2 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt17.correlation2.txt",header = T)
p3 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt75.correlation2.txt",header = T)
p4 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt92.correlation2.txt",header = T)
p5 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt96.correlation2.txt",header = T)
p6 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt107.correlation2.txt",header = T)
p7 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt109.correlation2.txt",header = T)
p8 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt114.correlation2.txt",header = T)
p9 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt116.correlation2.txt",header = T)
p10 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt120.correlation2.txt",header = T)
p11 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
data = read.table("/*/COR//Pt127.correlation2.txt",header = T)
p12 = ggplot(data,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_fill_continuous(low="blue",high="red")+geom_text(aes(label=round(value,3)),angle=0,size=3)+theme_classic()+theme(axis.line = element_blank())+theme(axis.text.x = element_text(size = 10,angle = 90),axis.text.y = element_text(size = 10,angle = 0))+labs(x="",y="",title = "Pearson Correlation Coefficient")+theme(plot.title = element_text(hjust = 0.5))+guides(fill = guide_legend(title = expression("R"),reverse = TRUE)) 
ggarrange(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,ncol=4,nrow=3) 
ggsave(paste("../IM.txt.correlation_heatmap.pdf",sep = ""),width = 20,height =15) 

结果示例:


image.png

2)组合方式2

ggplot绘制的结果进行组合:

library(ggplot2)
library(reshape2)
library(pheatmap)
library(ggpubr)
IM<-read.table("IM.format",header = T)
MPLC<-read.table("MPLC.format",header = T)
COHORT2<-read.table("COHORT2.format",header = T)


pdf(paste("2/IM.correlation.pdf",sep = ""),width = 30,height =20,onefile=FALSE)
ggplot(IM,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_x_discrete(breaks=NULL)+scale_y_discrete(breaks=NULL)+scale_fill_gradient2(mid="white",high="red",low="blue",midpoint=-0.2)+labs(x="",y="",title = "IM Pearson_Correlation_Coefficient")+theme( plot.title = element_text(size=30,hjust = 0.5),legend.title=element_text(size=30),legend.text=element_text(size=30), panel.background=element_blank(),strip.text=element_text(size=25) )+guides(fill = guide_legend(title = expression("R"),reverse = TRUE))+facet_wrap(~patient, ncol=3,scales="free")
dev.off()

pdf(paste("2/MPLC.correlation.pdf",sep = ""),width = 30,height =20,onefile=FALSE)
ggplot(MPLC,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_x_discrete(breaks=NULL)+scale_y_discrete(breaks=NULL)+scale_fill_gradient2(mid="white",high="red",low="blue",midpoint=-0.2)+labs(x="",y="",title = "MPLC Pearson_Correlation_Coefficient")+theme( plot.title = element_text(size=30,hjust = 0.5),legend.title=element_text(size=30),legend.text=element_text(size=30), panel.background=element_blank(),strip.text=element_text(size=25) )+guides(fill = guide_legend(title = expression("R"),reverse = TRUE))+facet_wrap(~patient, ncol=4,scales="free")
dev.off()


pdf(paste("2/COHORT2.correlation.pdf",sep = ""),width = 30,height =20,onefile=FALSE)
ggplot(COHORT2,aes(x=Var1,y=Var2,fill=value))+geom_tile()+scale_x_discrete(breaks=NULL)+scale_y_discrete(breaks=NULL)+scale_fill_gradient2(mid="white",high="red",low="blue",midpoint=-0.2)+labs(x="",y="",title = "COHORT2 Pearson_Correlation_Coefficient")+theme( plot.title = element_text(size=30,hjust = 0.5),legend.title=element_text(size=30),legend.text=element_text(size=30), panel.background=element_blank(),strip.text=element_text(size=25) )+guides(fill = guide_legend(title = expression("R"),reverse = TRUE))+facet_wrap(~patient, ncol=8,scales="free")
dev.off()

结果示例:


image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,277评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,689评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,624评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,356评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,402评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,292评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,135评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,992评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,429评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,636评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,785评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,492评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,092评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,723评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,858评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,891评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,713评论 2 354

推荐阅读更多精彩内容