预训练的词向量整理(Pretrained Word Embeddings)

English Corpus

word2vec

Pre-trained vectors trained on part of Google News dataset (about 100 billion words). The model contains 300-dimensional vectors for 3 million words and phrases. The phrases were obtained using a simple data-driven approach described in this paper

download link | source link

fastText

1 million word vectors trained on Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset (16B tokens).

download link | source link

1 million word vectors trained with subword infomation on Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset (16B tokens).

download link | source link

2 million word vectors trained on Common Crawl (600B tokens).

download link | source link

GloVe

Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download)

download link | source link

Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download)

download link | source link

Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download)

download link | source link

Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download)

download link | source link

Chinese Corpus

word2vec

Wikipedia database, Vector Size 300, Corpus Size 1G, Vocabulary Size 50101, Jieba tokenizor

download link | source link

fastText

Trained on Common Crawl and Wikipedia using fastText. These models were trained using CBOW with position-weights, in dimension 300, with character n-grams of length 5, a window of size 5 and 10 negatives. We used the Stanford word segmenter for Tokenization

download link | source link

Reference

https://github.com/Hironsan/awesome-embedding-models
http://ahogrammer.com/2017/01/20/the-list-of-pretrained-word-embeddings/
https://code.google.com/archive/p/word2vec/
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://fasttext.cc/docs/en/english-vectors.html
https://arxiv.org/pdf/1310.4546.pdf

github link

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,639评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,277评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,221评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,474评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,570评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,816评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,957评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,718评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,176评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,511评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,646评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,322评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,934评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,755评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,987评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,358评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,514评论 2 348

推荐阅读更多精彩内容

  • 这个叫路由层,实际上是把几个层拼在一块。 这里面提供 4 个函数: route_layer make_route_...
    陈继科阅读 3,953评论 0 2
  • DAY19 NO.32 小树 (白帽子-事实陈述)最近我陷入了纠结,我究竟该不该辞职作专职心理咨询师?我白天工...
    小树_阅读 545评论 3 3
  • 这是一部童话剧,写的是毛克利的故事,反映的却是我们每一个人成长路上的真实写照。 就像影片里面不断提到的那句“要想活...
    ss终生学习者阅读 683评论 0 1
  • 换种方式感受孩子 ——记第一次精品阅读课 不仅孩子,很多人的心灵世界都很精微,我们有时表面大大咧咧,实则我们莫名的...
    团的花园阅读 136评论 0 0