小学数学应用题解题的十大方法
1.观察法 观察法,是通过观察题目中数字的变化规律及位置特点、条件与结论之间的关系、题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
2.尝试法 解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫做“尝试探索法”。在尝试时可以提出假设、猜想,无论是假设还是猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结论是什么,从而减少尝试的次数,提高解题的效率。
3.列举法 解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。这种分析、解决问题的方法叫做列举法。列举法也叫枚举法或穷举法。用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图。
4.综合法 从已知数量和未知数量的关系入手,逐步分析出已知数量和未知数量间的关系,一起到求出未知数量的解题方法叫做综合方法。以综合法解应用题时,先选择两个已知数量,并通过这两个已知数量解出一个问题,然后将这个解出的问题作为一个新的已知条件,与其它已知条件配合,再解出一个问题„„一直到解出应用题所求解的未知数量。运用综合法解应用题时,应明确通过两个已知条件可以解决什么问题,然后才能从已知逐步推到未知,使问题得到解决。这种思考方法适用于已知条件比较少,数量关系比较简单的应用题。
5.分析法 从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决的解题方法,叫做分析法。用分析法解应用题时,如果解题所需要的两个条件(或其中一个条件)是未知的,就要分别求解找出这两个(或一个)条件,一直到所需要的条件都是已知的为止。分析法适用于解答数量关系比较复杂的应用题。
6.综合-分析法 综合法和分析法是解应用题时常用的两种基本方法。在解比较复杂的应用题时,由于单纯用综合法或分析法时,思维会出现障碍,所以要把综合法和分析法结合起来使用把这一方法叫做综合-分析法。
7.归一法 先求出单位数量(如单价、工效、单位面积的产量等),再以单位数量为标准,计算出所求数量的解题方法叫做归一法。
8.归总法 已知单位数量和单位数量的个数,先求出总数量,再按另一个单位数量或单位数量的个数求未知数量的解题方法叫妆总法。解答这类问题的基本原理是:(1)总数量=单位数量×单位数量的个数;(2)另一单位数量(或个数)=总数量÷单位数量的个数(或单位数量)。
9.分解法 “由整体到部分、由部分到整体”是认识事物的规律。一道多步复杂的应用题是由几道一步的基本应用题组成。在分析应用题时,可把一道复杂的应用题拆分成几道基本应用题,从中找到解题的线索。把这种解题的思考方法称作分解法。
10.假设法 当应用题用一般方法很难解答时,可假设题目中的情节发生了变化,假设题目中两个或几个数量相等、假设题目中某个数量增加了或减少了,然后在假设的基础上推理调整由于假设而引发的变化的数量的大小,题目中隐藏的数量关系就可能变得明显,从而找到解题方法。这种解题方法就叫做假设法。当应用题中没有解题必须的具体数量,且已有数量间的关系很抽象,如果假设题中有个具体的数量,或假设题目中某个未知数的数量是单位1,题目数量之间的关系就会变得清晰明确,从而便于找到解决问题的方法,这种解题的方法叫做设数法。在用设数法解答应用题设具体数量时,要注意两点:一是所设数量要尽量小一些;二是所设的数量要便于分析数量关系和计算。
解决问题的四大策略1. 画图 2. 列表 3. 猜想与尝试 4. 从简单处入手寻找解决问题的规律