Flume介绍

声明

我对Flume的研究并不深,这一篇文章来源于2016年3月的某一个下午对Flume的调研,仅有一个下午,所以可能有一些观点是不对的。另外,文章很多内容来源于一些大神的博文,当时匆匆没有记录引用来源。所以,如果有人可以发现本文的错误,以及引用的文章,还请在留言中指出。万分感谢。

Flume OG

Flume OG:Flume Original Generation,初代Flume。
由三种角色构成:代理点(agent)、收集节点(collector)、主节点(master)

  • agent 从各个数据源收集日志数据,将收集到的数据集中到 collector,然后由收集节点汇总存入 hdfs。
  • master 负责管理 agent,collector 的活动。
  • agent、collector 都称为 node,node 的角色根据配置的不同分为 logical node(逻辑节点)、physical node(物理节点)。对 logical nodes 和 physical nodes 的区分、配置、使用一直以来都是使用者最头疼的地方。
  • agent、collector由Source、Sink组成,当前节点的数据是从Source传送到Sink的。


    flume-og-01.png

Flume NG

Flume NG:Flume New Generation

  • NG只有一种角色节点:代理点(agent)。
  • 没有collector、master节点。这是核心组件最核心的变化。
  • 去除了 physical nodes、logical nodes 的概念和相关内容。
  • agent 节点的组成也发生了变化。NG agent 由 source、sink、channel 组成。
  • NG删减了角色,脱离了对Zookeeper的依赖


    flume-ng.png

Flume NG分析

基本概念

  • Event:一个数据单元,带有一个可选的消息头。
  • Flow:Event从源点到达目的点的迁移的抽象。
  • Client:操作位于源点处的Event,将其发送到Flume Agent。
  • Agent:一个独立的Flume进程,包含组件Source、Channel、Sink。
  • Source:用来消费传递到该组件的Event ,存入channel中。
  • Channel:中转Event的一个临时存储,保存有Source组件传递过来的Event。
  • Sink:从Channel中读取并移除Event,将Event传递到Flow Pipeline中的下一个Agent(如果有的话)。

数据流:

Flume 的核心是把数据从数据源收集过来,再送到目的地。为了保证输送一定成功,在送到目的地之前,会先缓存数据,待数据真正到达目的地后,删除自己缓存的数据:当sink写入失败后,可以自动重启,不会造成数据丢失,因此很可靠。
Flume 传输的数据的基本单位是 Event,如果是文本文件,通常是一行记录,这也是事务的基本单位。Event 从 Source,流向 Channel,再到 Sink,本身为一个 byte 数组,并可携带 headers 信息。Event 代表着一个数据流的最小完整单元,从外部数据源来,向外部的目的地去。

核心组件:

Source

  • ExecSource: 以运行 Linux 命令的方式,持续的输出最新的数据,如 tail -F 文件名 指令,在这种方式下,取的文件名必须是指定的。 ExecSource 可以实现对日志的实时收集,但是存在Flume不运行或者指令执行出错时,将无法收集到日志数据,无法保证日志数据的完整性。
  • SpoolSource: 监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点:拷贝到 spool 目录下的文件不可以再打开编辑;spool 目录下不可包含相应的子目录。SpoolSource无法实现实时的收集数据,但可以设置以分钟的方式分割文件,趋于实时。

Channel

Memory Channel, JDBC Channel , File Channel,Psuedo Transaction Channel。比较常见的是前三种 channel。

  • MemoryChannel 可以实现高速的吞吐,但是无法保证数据的完整性。
  • MemoryRecoverChannel 在官方文档的建议上已经建义使用FileChannel来替换。
  • FileChannel保证数据的完整性与一致性。在具体配置FileChannel时,建议FileChannel设置的目录和程序日志文件保存的目录设成不同的磁盘,以便提高效率。


    flume-channel.png

Sink

flume-sink.png

可靠性

在Flume NG中,可靠性指的是在数据流的传输过程中,保证events的可靠传递。
在Flume NG中,所有的events都保存在Agent的Channel中,然后被发送到数据流下一个Agent或者最终的存储服务中。当且仅当它们被保存到下一个Agent的Channel中,或者被保存到最终的存储服务中。这就是Flume 提供数据流中点到点的可靠性保证的最基本的单跳消息语义传递。
首先,Agent间的事务交换。Flume使用事务的办法来保证events的可靠传递。Source和Sink分别被封装在事务中,这些事务由保存event的存储提供或者由Channel提供。这就保证了event在数据流的点对点传输中是可靠的。在多级数据流中,如下图,上一级的Sink和下一级的Source都被包含在事务中,保证数据可靠地从一个Channel到另一个Channel转移。


flume-transaction.png

下图A:正常情况下的 events流程。
下图B:Agent2 跟central event store失联,Agent2提交的事务失败,将events缓存起来。
下图C:重新恢复时,再恢复失联之前的任务以及后续的events发送。


flume-trans-example.png

高可用

如下图所示,Agent1中,只有要有一个Sink组件可用,events就被传递到下一个组件,如果一个Sink能成功处理Event(事务完成),则会加入到一个Pool中, 否则,则会从Pool中移除,并计算失败次数,设置惩罚因子。所以,如果某一个Flow中某一层的Agent只有一个,或者全部宕机,可能导致这些Events被存储在流水线上最后一个存活节点。


flume-available.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,561评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,218评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,162评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,470评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,550评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,806评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,951评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,712评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,166评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,510评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,643评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,306评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,930评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,745评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,983评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,351评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,509评论 2 348

推荐阅读更多精彩内容