动态规划
动态规划算法通常基于一个递推公式及一个或多个初始状态。 当前子问题的解将由上一次子问题的解推出。使用动态规划来解题只需要多项式时间复杂度, 因此它比回溯法、暴力法等要快许多。
状态和状态转移方程
例子:01背包问题
有 n 个价值和重量分别为 v[i] 和 w[i] 的物品和一个容量为 m 的背包,要从中选出总重量不超过 m 的物品放入背包,问所有方案中价值总和的最大值。
输入
n=4
(w,v)={(2,3),(1,2),(3,4),(2,2)}
w=5
输出
7(选择0,1,3号物品)
状态: dp[i][j] 表示考虑前 i 个物品,背包容量为 j 时的最大价值
初始: dp[n][j] = 0
状态转移方程:
int dp[N][N];
void solve(){
for (int i=n-1;i>=0;i--){
for(int j=0;j<=w;j++){
if(j<w[i])
dp[i][j]=dp[i+1][j];
else
dp[i][j]=max(dp[i+1][j],dp[i+1][j-w[i]]+v[i]);
}
}
printf("%d\n",dp[0][w]);
}