神经网络——最大池化层的使用

1 池化的目的

实施池化的目的:(1) 降低信息冗余;(2) 提升模型的尺度不变性、旋转不变性;(3) 防止过拟合。

2 常见的池化类型

池化层的常见操作包含以下几种:最大值池化,均值池化,随机池化,中值池化,组合池化等。
其中更为常用的池化方法是最大池化(max-pooling)和均值池化(mean-pooling)。

3 最大池化的特点

1 最大池化(max-pooling)即取局部接受域中值最大的点。
2 最大值池化的优点在于它能学习到图像的边缘和纹理结构。
3 根据相关理论,特征提取的误差主要来自两个方面:
(1)邻域大小受限造成的估计值方差增大;
(2)卷积层参数误差造成估计均值的偏移。
一般来说,mean-pooling能减小第一种误差,更多的保留图像的背景信息,max-pooling能减小第二种误差,更多的保留纹理信息。与mean-pooling近似,在局部意义上,则服从max-pooling的准则。

4 最大池化卷积核的设置

max-pooling卷积核的大小一般是2×2。 非常大的输入量可能需要4x4。 但是,选择较大的形状会显着降低信号的尺寸,并可能导致信息过度丢失。 通常,不重叠的池化窗口表现最好。

5 实战一 —— 输入tensor观察池化层的作用

import torch
from torch import nn
from torch.nn import MaxPool2d
input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]],dtype=torch.float32)

input = torch.reshape(input,(-1, 1, 5, 5))
print(input.shape)

class Linyu(nn.Module):
    def __init__(self):
        super(Linyu,self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=False)

    def forward(self,input):
        output = self.maxpool1(input)
        return output

linyu = Linyu()

output = linyu(input)
print(output)

输出:

torch.Size([1, 1, 5, 5])
tensor([[[[2.]]]])

若将self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=False)中ceil_mode=True,
则输出:

torch.Size([1, 1, 5, 5])
tensor([[[[2., 3.],
          [5., 1.]]]])

6 实战二 —— 最大池化在图像处理中的使用

import torch
from torch import nn
from torch.nn import MaxPool2d
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("../dataset",train=False,transform=torchvision.transforms.ToTensor(),download=False)
dataloader = DataLoader(dataset=dataset,batch_size=64,drop_last=False)

class Linyu(nn.Module):
    def __init__(self):
        super(Linyu,self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=False)

    def forward(self,input):
        output = self.maxpool1(input)
        return output

linyu = Linyu()

writer = SummaryWriter("../logs/P15_logs")
step = 0
for data in dataloader:
    imgs, targets = data
    writer.add_images("input",imgs, step)
    output = linyu(imgs)
    writer.add_images("output",output, step)
    step = step + 1

writer.close()

使用tensorboard --logdir=logs/P15_logs命令打开tensorboard

maxpooling

参考资料:
1.https://zhuanlan.zhihu.com/p/77040467
2.https://baike.baidu.com/item/%E6%9C%80%E5%A4%A7%E6%B1%A0%E5%8C%96/22692585?fr=aladdin
3.https://www.bilibili.com/video/BV1hE411t7RN?p=19

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,509评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,806评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,875评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,441评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,488评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,365评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,190评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,062评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,500评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,706评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,834评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,559评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,167评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,779评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,912评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,958评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,779评论 2 354

推荐阅读更多精彩内容