Deep Learning from the perspective of beginners

Introduction

Deep learning(deep structured learning, hierarchical learning or deep machine learning) is a
branch of machine learning based on a set of algorithms that attempt to model high-level abst
-ractions in data by using multiple processing layers, with complex structures or otherwise,
composed of multiple non-linear transformations.

Here are some references about learning procedures from the perspective of beginners and sharing
some resoures with deep learning about how beginners learned step by step.


*If there are some more better suggestions,please add following and help make it better :)


Step one: Mainly build up the basic sense of deep learning

[1].Deep Learning Notes
you can learn some basic senses about the deep learning

Including:

  • AutoEncoder
  • Sparse Coding
  • Restricted Boltzmann Machine(RBM)
  • Deep BeliefNetworks
  • Convolutional Neural Networks

[2].Beginner Reference Papers and Books

Including:

  • AlexNet
  • GoogLeNet
  • VGGNet
  • Inception-v3
  • ResNet
  • Tensor
  • Inception-v4

[3].The Deep Learning Playbook

Including:

  • Libraries:
    • Theano (Python)
    • Libraries based on Theano: Lasagne, Keras, Pylearn2
    • Caffe (C++, with Python wrapper)
    • TensorFlow (Python, C++)
    • Torch (Lua)
    • ConvNetJS (Javascript)
    • Deeplearning4j (Java)
    • MatConvNet (Matlab)
  • Projects / Demos:
    • All the tutorials of your favorite library above
    • Facial Keypoint Detection
    • Deep Dream
    • Eyescream
    • Deep Q-network (Atari game player)
    • Caffe to Theano Model Conversion (use Caffe pretrained model in Lasagne)
    • R-CNN
    • Fast R-CNN
    • Plankton Classification (winning solution of National Data Science Bowl on Kaggle)
    • Galaxy Classification (winning solution of Kaggle competition)
    • University of Toronto Demos

[4].Recommandated Coures


[5].Deep Learning Reference Website


Step two: Notes of Basic Reference Paper for the beginners


AlexNet:ImageNet Classification with Deep Convolutional Neural Networks

1.Testing dataset of this paper -> 1.2 million training images, 50,000 validation images, and
150,000 testing images(ILSVRC-2010)

results:

ILSVRC-2010


Paste_Image.png

ILSVRC-2012


Paste_Image.png

2.architectecture

Paste_Image.png

3.ReLU Nonlinearity

Following Nair and Hinton [20],this paper refers to neurons with this nonlinearity as Rectified Linear Units (ReLUs). Deep convolutional neural networks with ReLUs train several times faster than their equivalents with tanh units.

Paste_Image.png

(On this dataset the primary concern is preventing overfitting, so the effect they are observing is different from the accelerated ability to fit the training set which we report when using ReLUs)

[20] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proc. 27th
International Conference on Machine Learning, 2010

4.Local Response Normalization

ReLUs have the desirable property that they do not require input normalization to prevent them from saturating.Response normalization reduces our top-1 and top-5 error rates by 1.4% and 1.2%,respectively

5.Overlapping Pooling

This scheme reduces the top-1 and top-5 error rates by 0.4% and 0.3%, respectively, as compared with the non-overlapping scheme s = 2, z = 2, which produces output of equivalent dimensions

6.two primary ways in which we combat overfitting

This neural network architecture has 60 million parameters,therefore,combat overfitting is a important problem

  • Data Augmentation:

  • The first form of data augmentation consists of generating image translations and horizontal reflections

  • The second form of data augmentation consists of altering the intensities of the RGB channels in training images

  • Dropout

  • consists of setting to zero the output of each hidden neuron with probability 0.5,The neurons which are “dropped out” in this way do not contribute to the forward pass and do not participate in backpropagation.So every time an input is presented, the neural network samples a different architecture,but all these architectures share weights. This technique reduces complex co-adaptations of neurons,since a neuron cannot rely on the presence of particular other neurons.

  • note:this paper recommand to use dropout in the first two fully-connected layers of figure architecture

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容