学习笔记|卡尔曼滤波,粒子滤波,动态贝叶斯网络(1)

最近一段时间,终于从纷繁的文献中走出来了,大致能缕清楚卡尔曼滤波,粒子滤波,动态贝叶斯网络之间的关系了。写一篇学习日志,mark一下,用通俗易懂的话帮助自己理解那些莫名其妙的公式。简书不能输入公式,真是蛋疼,,,只好用图片凑活了,确实有点丑。

1.知识预热——条件概率与贝叶斯公式

条件概率的定义: 设A,B为随机试验的二个3事件,且P(A)>0,则称P(B|A)为在事件A发生的条件下事件B发生的条件概率。
这条定义很简单,就不做过多解释,需要关注它的乘法定理,


由乘法定理就很容易推出全概率公式,


全概率公式也叫贝叶斯公式。
式中P(A),P(B)称为先验概率,之所以称为先验概率,是因为它们根据以往经验和分析得到的概率,不考虑与其他事件的联系。P(A|B)则称为B发生后A的后验概率,它通常是‘’因果‘’中的“果”,所以被称为后验概率。注意式中事件B往往被认为是“因”,是给定的,也就是说P(B)往往是一个常数,分母P(B)可以被扔掉,贝叶斯公式又可以被表示为,

上式中的α表示归一化处理,保证概率和是1。
由于



所以贝叶斯公式也可以被表示为,

贝叶斯公式

痛苦的经历告诉我,牢牢掌握条件概率和贝叶斯公式十分重要!它是后边一切推论呢基础!

2.一般时序模型

在去理解卡尔曼滤波,粒子滤波这些方法之前,一定要搞清楚我们要解决的问题是什么。根据《人工智能,一种现代方法》,我们可以建立起一个一般时间序列模型(简称时序模型),它规范了我们要解决的所有问题,如下图所示。

一般时序模型

这个模型包含两个序列,一个是状态序列,用X表示,一个是观测序列(又叫测量序列、证据序列、观察序列,不同的书籍有不同的叫法,在这里统一叫观测序列。)用Y表示。状态序列反应了系统的真实状态,一般不能被直接观测,即使被直接观测也会引进噪声;观测序列是通过测量得到的数据,它与状态序列之间有规律性的联系。举个例子,假设有一个人待在屋子里不知道外边有没有下雨,他于是观察进屋子里的人是否带伞,这里有没有下雨就是状态,有没有带伞就是观测。
上边这个模型有两个基本假设:
一是马尔可夫假设。假设当前状态只与上一个状态有关,而与上一个状态之前的所有状态无关。用公式来表示(式中1:t表示时刻1到时刻t的所有采样时刻),

马尔科夫假设

上面的P被称为状态转移概率。例如上面那个雨伞的例子,我们会认为今天下不下雨只与昨天下不下雨有关,与以前没有关系。
二是观测假设(又叫证据假设,观察者假设)。假设当前观测值只依赖于当前状态,与其他时刻的状态无关。用公式来表示,

观测假设

上面的P被称为观测概率(也有其他叫法)。例如上面那个雨伞的例子,进来的人带不带伞只与今天下不下雨有关系,与之前或未来下不下雨没关系。
由此,一个模型(记为λ)可以被状态转移概率矩阵和观测概率矩阵唯一确定。
这两个假设可以极大地将问题简化,而且很多实际情况符合这两个假设,即使有些偏差,我们也可以对模型进行拓展。例如雨伞的例子,我们认为今天下不下雨不仅与昨天有关,还与前天甚至更早的时间有关,那么就可以对马尔可夫假设进行拓展,拓展成二阶甚至更高阶的马尔可夫模型,例如二阶

那么这个模型需要完成的任务有哪些呢?主要有以下几个方面:
(1)滤波,计算
即根据现在及现在以前的所有测量数据,估计当前的状态。在雨伞那个例子中,根据目前为止过去进屋的人携带雨伞的所有观察数据,计算今天下雨的概率,这就是滤波。
(2)预测,计算
。即根据现在及现在以前的所有测量数据,估计未来某个时刻的状态。在雨伞的例子中,根据目前为止过去进屋的人携带雨伞的所有观察数据,计算从今天开始若干天后下雨的概率,这就是预测。
(3)平滑,计算
。即根据现在及现在以前的所有测量数据,估计过去某个时刻的状态。在雨伞的例子中,意味着给定目前为止过去进屋的人携带雨伞的所有观察数据,计算过去某一天的下雨概率。
(4)最可能解释,计算
即给出现在及现在以前的所有测量数据,找到最能最可能生成这些测量数据的状态序列。例如,如果前三天每天都出现雨伞,但第四天没有出现,最有可能的解释就是前三天下雨了,而第四天没下雨。最可能解释也被称为解码问题,在语音识别、机器翻译等方面比较有用,最典型的方法是隐马尔可夫模型。
(5)评估(这是我自己加的,我觉得有必要加上这一点),计算

这里面的λ是指模型,这个公式意味着在该模型下,给定到目前为止的状态序列,计算输出特定观测序列的可能性。这其实是个评估问题,可以评估模型的好坏,概率越高,意味着模型越能反映观测序列与状态序列之间的联系,模型就越好。
(6)学习。计算λ,也即状态转移概率和观测概率

学习的目的是根据历史数据得到合理的模型,一般是根据一个目标函数,对模型进行迭代更新,例如使(5)中要计算的值最大便可以作为一个目标。

上边列出了一般时序模型要解决的所有问题,囊括的内容非常丰富,占了人工智能很大一块。尽管滤波只是其中一项,但理解模型的总体会对理解滤波有所帮助。下面把目光聚焦到滤波上来。

3.滤波问题

根据目前为止过去所有的测量数据,估计当前的状态,这便是滤波,但直接计算会有一个很明显的问题。注意到,计算值的条件是过去所有的测量数据,意味着计算每一个时刻的概率都要回顾整个历史测量数据,那么随着时间的推移,更新的代价会越来越大。所以需要找到一种办法,根据时刻t的滤波结果,和时刻t+1时刻的测量数据,就能计算出t+1时刻的滤波结果,这个计算过程叫做递归估计。用公式来表示,存在某个函数f,满足:


为了得到上面那个函数,对要求的概率作以下变换

第一步到第二步根据贝叶斯方程,第二步到第三步根据观测假设。第三步的的前一项是状态转移概率,模型已知,后面一项是一个单步预测,对单步预测做进一步的转换:


式中第一步应该比较好理解,t+1时刻某个状态可能由t时刻任何一个状态转移而来,所以t+1时刻某个状态的概率就等于t时刻所有可能状态的概率乘以相应的转移概率求和,第一步到第二步根据贝叶斯方程,第二步到第三步根据马尔科夫假设。注意到第三步第一项是状态转移概率,模型已知,第二项即t时刻的滤波结果,这样我们就可以利用t时刻的滤波结果递推t+1时刻的滤波结果了。递推公式可以表示为,


这种方法被称为前向递归。这里表示的状态是离散的,如果是连续的求和符号改为积分符号即可。

但这种方法有个最大的问题就是有确切的模型,也就是说状态转移概率和观测概率必须是已知的,但大多数情况它们并不是已知的,当然可以通过学习得到,但学习本身并不是那么容易的,那么如何才能在模型未知的情况下,实现上述递推呢?接下来就要看看卡尔曼滤波怎么巧妙地解决这个问题了!

今天先写到这,敲公式真心耗时间!!!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容