R数据分析:双分类变量的交互作用作图

之前的双连续变量交互作用作图,和分类变量与连续变量的交互都给大家写了,今天给大家写写,两个分类变量的交互,及简单斜率图画法。

本文的例子为:

在研究导师类型和性别这个两个自变量学生GPA的影响时,我们想看一看导师类型和性别的交互作用,这个例子中,导师类型和性别都是分类变量。

数据模拟

N <- 250    
Q <- sample(rep(c(-1,0,1),N),N,replace = FALSE)
G <- sample(rep(c(0,1),N*3/2),N,replace = FALSE) 

Y <- .5*Q + .25*G + 2.5*Q*G+ 1 + rnorm(N, sd=2) 

Y = (Y - min(Y)) / (max(Y) - min(Y))*4
GPA.Data.3<-data.frame(GPA=Y,Tutor=Q,Gender=G)  

上面的代码就模拟出了个数据框,其中Q为导师类型,有3类,模拟的时候用的-1,0,1代替,性别用的0,1

接下来,我们得将分类变量转化为哑变量,R会自动将因子处理为哑变量,所以我们直接转为因子就行:

GPA.Data.3$Tutor.F <- factor(GPA.Data.3$Tutor,  
                                level=c(-1,0,1),    
                                labels=c("No Tutor", "Group Tutor", "Private Tutor"))   
GPA.Data.3$Gender.F <- factor(GPA.Data.3$Gender,
                                   level=c(0,1),    
                                   labels=c("Male", "Female")) 

回归分析

然后我们进行回归分析,一个是有交互作用的,一个是不含交互作用的

GPA.3.Model.1<-lm(GPA ~ Tutor.F+Gender.F, data = GPA.Data.3)    
GPA.3.Model.2<-lm(GPA ~ Tutor.F*Gender.F, data = GPA.Data.3)    

stargazer(GPA.3.Model.1, GPA.3.Model.2,type="html", 
          column.labels = c("Main Effects", "Interaction"), 
          intercept.bottom = FALSE, 
          single.row=TRUE,  
          notes.append = FALSE, 
          omit.stat=c("ser"),   
          star.cutoffs = c(0.05, 0.01, 0.001),  
          header=FALSE,
                    out="test.html") 

运行代码得出回归分析的结果如下:

image

画简单斜率图

画斜率图的第一步依然是跑出每个子类的系数:

Inter.GPA.3 <- effect('Tutor.F*Gender.F', GPA.3.Model.2,
                      se=TRUE)

Inter.GPA.3.DF<-as.data.frame(Inter.GPA.3)

我们可以看一看每个子类的拟合系数长啥样:

image

上图就显示了,在两个自变量的不同水平fit值是不一样的,而且通过回归的交互项显著性分析,也是知道这个fit是有显著性差异的

接下来就开始画图:

Inter.GPA.3.DF$Tutor.F <- factor(Inter.GPA.3.DF$Tutor,  
                                 level=c("No Tutor", "Group Tutor", "Private Tutor"),    
                                 labels=c("No Tutor", "Group Tutor", "Private Tutor"))   
Inter.GPA.3.DF$Gender.F <- factor(Inter.GPA.3.DF$Gender,
                                  level=c("Male", "Female"),   
                                  labels=c("Male", "Female"))

Plot.GPA.3<-ggplot(data=Inter.GPA.3.DF, aes(x=Tutor.F, y=fit, group=Gender.F))+
  geom_line(size=2, aes(color=Gender.F))+
  geom_ribbon(aes(ymin=fit-se, ymax=fit+se,fill=Gender.F),alpha=.2)+
  ylab("GPA")+
  xlab("Tutor")+
  ggtitle("Tutors and Gender as GPA Predictors")+
  theme_bw()+
  theme(text = element_text(size=12),
        legend.text = element_text(size=12),
        legend.direction = "horizontal",
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.position="top")
Plot.GPA.3
image

到这儿,我们的简单斜率图就画好了,注意两自变量都是分类变量的时候,x轴上的自变量有3个水平,所以这个斜率图一般都不是直的,一般斜率在中间都会打个折。

小结

今天给大家写了双分类变量的交互以及简单斜率图的做法,感谢大家耐心看完。发表这些东西的主要目的就是督促自己,希望大家关注评论指出不足,一起进步。内容我都会写的很细,用到的数据集也会在原文中给出链接,你只要按照文章中的代码自己也可以做出一样的结果,一个目的就是零基础也能懂,因为自己就是什么编程基础没有从零学Python和R的,加油。数据分析问题咨询,代处理请私信。

(站外链接发不了,请关注后私信回复“数据链接”获取本头条号所有使用数据)

往期内容:

R数据分析:双因素方差分析与交互作用检验

R数据分析:双连续变量交互作用的简单斜率图作图及解释

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353

推荐阅读更多精彩内容